

自然光デジタルホログラフィの現在と将来展望

田原 樹

国立研究開発法人情報通信研究機構 電磁波研究所 電磁波先進研究センター (〒184-8795 東京都小金井市貫井北町 4-2-1)

Present and Future of Digital Holography with Natural Light

Tatsuki TAHARA

Applied Electromagnetic Research Center, Radio Research Institute, National Institute of Information and Communications Technology (NICT), 4-2-1 Nukuikitamachi, Koganei, Tokyo 184–8795

(Received July 1, 2022)

Developments of incoherent digital holography (IDH) with daily-use light are presented, and its prospective applications are discussed. Optical systems of IDH have become extremely compact, and the applications of IDH have been extended to various imaging techniques and apparatus. A theory of IDH for spatially and temporally incoherent light has been confirmed by various research studies. Directions of the developments and applications of IDH are discussed on the basis of research achievements.

Key Words: Incoherent digital holography, Holography with natural light, Computational imaging, Multidimension-multiplexed full-phase-encoding holography (MPH), Holosensor

1. はじめに

生物は一般に2視点以上の画像情報をセンシングして 3次元空間を認識する.一方,自然界に無い3次元情報 センシング技術であるホログラフィ1-3)では、光の干渉 を利用して2光波の位相差情報を干渉縞画像(ホログラ ム)として取得し、2次元の位相差情報を介して3次元 情報を記録する. そして, 光の回折を利用し, ホログラ ムから3次元画像の情報を再生する.ホログラムをデジ タル記録し、計算機で定量的な3次元情報を像再生する 技術はデジタルホログラフィと呼ばれる4,5). 中でも, 空間コヒーレンスの低いデジタルホログラムを取得する 技術はインコヒーレントデジタルホログラフィ (Incoherent digital holography: IDH)⁶⁻¹⁰⁾と呼ばれ, 蛍光や 非線形光のホログラムを取得可能^{11,12)},一般照明光を適 用可能^{10,13)}である事から盛んに研究されている。また、 日常生活で使用される光は時間コヒーレンスにも乏しい ため, レーザー光源を用いる IDH⁷⁾とは異なり, コヒー レンス長も考慮する必要がある.自然光の様な、時間的、 空間的にインコヒーレントな光のホログラムをデジタル 記録する技術は自然光デジタルホログラフィとされ、研 究開発がなされている.

本稿では,自然光デジタルホログラフィの世界的な研 究開発状況を紹介し,将来展望について論じる.

2. インコヒーレントデジタルホログラフィ(IDH)

Fig. 1 に IDH の概略を示す. IDH では、太陽光を介し てシャボン玉が干渉模様を形成する様に、自然光でも自 らの光に対しては干渉する性質を利用する. 物体から来 る光は、自己干渉光学系を通して干渉縞に変換され、ホ ログラムとして記録される. ホログラムに対し、デジタ ルホログラフィで採用される信号処理を計算機内で施し、 定量的な 3 次元情報を像再生する. ここで、スペクトル 幅が 2 Δk 、中心スペクトルが k_c , 矩形の波長分布の物体 光を仮定し、物体の一点 $u(x_o, y_o, z_o)$ から 2 光波が生成 され、その 2 光波が形成する干渉縞画像を I(x, y)とする と、参考文献 14 より I(x, y)は次式で表せる.

$$I(x,y) = I_0(x,y) +q(x,y,\Delta k,\phi_n)u_k(x,y)\exp[-i\phi_n(k_n)] + C.C.,$$
⁽¹⁾

$$q(x, y, \Delta k, \phi_{p}) = \operatorname{sinc} \left[\Delta k \left\{ \left[r_{1}(x, y, z) - r_{2}(x, y, z) \right] + OPL - \frac{\phi_{p}(k_{c})}{k_{c}} \right\} \right],$$

$$(2)$$

$$u_{h}(x,y) = I_{1}(x,y) \exp[ik_{c} \{ [r_{1}(x,y,z) - r_{2}(x,y,z)] + OPL \}],$$
(3)

ここで, $I_0(x, y)$ は0次回折光強度分布, $q(x, y, \Delta k, \phi_p)$ は 干渉縞の減衰項, $u_h(x, y)$ はイメージセンサ面における 干渉縞の複素振幅分布, $\phi_p(k_c)$ は位相シフト量, *C.C.* は

(1) 式の右辺第2項の複素共役, r₁(x, y, z), r₂(x, y, z) は 2光波の位置ベクトル, OPL は複屈折位相板と位相シフ タによる2光波間の光路長差の調整量, I₁(x, y)は干渉 縞の強度分布を示す.自然光の位相は空間的にも時間的 にも一貫性がない. 自己干渉光学系の特徴的な点として. Fig.1の複屈折レンズからイメージセンサまで、自然な 光で生成された2物体光間の位相差がコヒーレントにな る様に設計する. その結果, 安定した位相差をもって干 渉縞を記録する、その一方で、物体本来の複素振幅分布 を記録している訳ではない. 自然な光で物体の位相を得 るには自己参照型のホログラフィシステム27)を導入す ることが一つの手段として挙げられる. (1)~(3)式より, 2光波の光路長差、位相シフト量に応じて干渉縞の可視 度が低下する事が示されている.また,波長幅が広いほ ど、光路長差や位相シフトに伴う干渉縞の減衰が顕著で ある事が示されている. 光路長差の調整の難易度を下げ. 且つ曲率半径差の大きな干渉縞が必要な際、波長フィル タが挿入される。物体の各点が形成する干渉縞画像 I(x, y)の、インコヒーレントな重ね合わせを記録する事 で物体のホログラムを得る.物体が大きくなるにつれて 点光源数が増える. イメージセンサのダイナミックレン ジが記録可能な点光源数に関係するため、ダイナミック レンジは記録可能な物体の大きさに重要な要因となる.

3. 自然光デジタルホログラフィの現在

自然な光を用いるデジタルホログラフィの研究者はこの5年で著しく増加した.応用分野の開拓ならびに応用 に向けた研究開発が迅速に進められている.中でも3次 元顕微鏡,3次元カメラ応用に向けた研究開発が活発で ある.

3.1 自然光ホログラフィの顕微鏡への応用

蛍光顕微鏡への応用は 1997 年に示された後¹¹⁾, 2010 年前後から継続して盛んに行なわれるようになったこと もあり¹⁵⁾, 生命科学研究者へ観察系を提供する段階に なりつつある. IDH を顕微鏡へ応用する事例が多い理由 には, 面内方向の点像分布関数が通常の広視野顕微鏡に 比べ向上し^{16,17)}, 単眼の撮像素子の1回の露光で3次元 情報を記録できることなどが挙げられる^{18,19)}. 蛍光顕微 鏡への応用は, 生命科学研究に貢献するために重要であ る. 自発光体のホログラムを得られる IDH の有望な応 用先として多くの研究者が集まっている. 直径 40 nm の 蛍光粒子のホログラムが取得され, 位置特定としては直 径 100 nm の蛍光粒子の動態に対し面内 5 nm, 面外

Fig. 1 Schematic of a self-interference incoherent digital holography setup.¹⁴⁾

40 nm の精度が報告されている²⁰⁾. 他に 3 次元的にサブ ミクロンの分解能が実験的に示された報告や²¹⁾、共焦 点顕微鏡との組み合わせによる 118 nm の面内空間分解 能22)、構造化照明との組み合わせによる点像分布関数 の向上23)が報告されている。動画計測に関しては、細 胞内の分子のトラッキングを行なった研究や²⁴⁾.3次元 光励起と組み合わせて3次元動画記録した研究25),直 径 210 nm の多数の蛍光粒子群を 100 fps 超の速度で 3 次 元動画記録する実験研究26)など、観察系として使える レベルまで性能を引き上げるための試みが多数見られる. また、任意の光をホログラムとして記録できる特徴から、 自然放出のラマン散乱光のホログラフィック動画記 録¹²⁾, 蛍光と定量位相を同時動画計測することを志向 した LED を用いる定量位相動画顕微鏡への応用なども 提案されている27). そして, 空間, 時間軸の性能向上 に加えて、波長情報の同時取得にも研究者が集まりつつ ある. 記録可能な蛍光色の数は同時計測可能な分子組成 の数に直結するため、カラー蛍光情報は細胞計測に必要 不可欠である. そこで, 蛍光の波長と3次元情報を同時 動画記録可能なホログラフィック蛍光顕微鏡システムが 開発されている²⁸⁾.また、蛍光染色された HeLa 細胞の カラーホログラフィック蛍光イメージングも示されてい る²⁹⁾. これまでに記録速度 72 fps のカラー蛍光ホログラ フィック動画イメージングが実証された³⁰⁾. 今後は, 前 述の空間分解能や位置特定精度を兼ね備えたカラーホロ グラフィック蛍光動画顕微鏡への発展が考えられる.

3.2 自然光ホログラフィの3次元カメラへの応用

LED, ランプ, 太陽光など, 日常で用いられる光で鮮 明な再生像が得られて以来,ホログラフィを3次元カメ ラへ応用させようとする研究が年々増加している. 光源 をレーザーに限定せずに、任意の奥行範囲の合焦像を, 単眼のイメージセンサで取得できる点が特長として挙げ られる. IDH を用いる自然な光の3次元イメージングに 関する研究は, Rosenらの研究グループが先駆的に行 なっている¹⁷⁾. LED 光源を用いた僅か数回の露光で, スペックルノイズの見られないホログラフィック3次元 イメージングが可能である事など、ホログラフィの適用 範囲を大きく広げ得る研究成果が示されている¹⁷⁾.ま た, Kim は太陽光でフルカラーのホログラムを得られる 事を実証し、ホログラフィが屋外の風景を記録可能な技 術である事が知られるようになった¹³⁾. この様な状況 においても解決すべき研究課題や応用先の模索。ホログ ラフィを活用した新しい計測法の提案など、多様な方向 に研究が進められている. IDH では従来, コヒーレント 光と見なして光波伝播計算を行なう回折積分の適用のた めに、デジタルカメラで見られるようなボケ感が得られ なかった。信川ら NHK 技術研究所のグループは、再生 像に対して意図的にボケ関数を与える事で、自然なボケ 感のある再生像の取得に成功している³¹⁾. Min らのグ ループでは、ホログラフィック光学素子から出力される 3次元情報を、IDH で計測するという応用例を提案して いる³²⁾.他には, 偏光イメージセンサ上に IDH 光学シ

ステムを集積した単一露光のホログラムセンサの提 案^{33,34)},手のひらサイズの IDH 光学系を用いたカラー 多重 3 次元イメージングが報告されている¹⁴⁾.また,単 一光路の自己干渉計と単一露光位相シフト法を用いた, 太陽光の単一露光フルカラーホログラフィック 3 次元イ メージングが報告された³⁵⁾.

また、インコヒーレントホログラフィの原理を利用し た新たな計測方法も提案されている¹⁴⁾. 光波の種類を 識別する事は、反射光と蛍光の分離と同時計測による、 物体の反射特性および物質分布の推定、顕微鏡における 定量位相と蛍光の同時イメージング等、物体の多様な情 報を計測するために重要な方法として示されている。ア クティブ照明した光の回折光と、 蛍光等の自発光の波長 帯が重畳する時、機械的走査や照明の変調無しに回折光 と自発光の両方を3次元イメージングすることは難しい とされてきた. そこで, IDH, 時間コヒーレンスの差, 位相シフトを利用して、波長帯が重畳し、ピーク波長の 差が5nm以下のLED光と蛍光を識別しながら同時3次 元イメージング可能な方法が提案された¹⁴⁾.波長幅と 時間コヒーレンスの関係から光波を識別可能な3次元イ メージング法は、同じ波長帯で波長幅の異なる蛍光の識 別も可能である事から、ビジョン応用時には反射光と蛍 光の同時3次元イメージング応用のみならず,アクティ ブ照明光と周辺環境光(パッシブ光)の識別・同時3次元 イメージング応用が期待され、顕微鏡応用時にはより多 くの蛍光標識を用いた分子組成のイメージング、非線形 光計測時に発生する物質からの蛍光の分離,同時3次元 イメージング等にも適用可能と期待される.

以上,空間と時間のコヒーレンスを制御し,太陽光で あってもフルカラーホログラムを単一露光で取得できる 様になり,コヒーレンス制御に基づく計測法も提案され ている.手のひらサイズ,またはイメージセンサ上に IDH 光学系を集積化するなど,コンパクト化が達成さ れ,さらには除振台を必要としないホログラム記録が達 成されている.各種ホログラフィ技術の応用範囲の拡大 が期待される.

4. 自然光デジタルホログラフィの将来展望

任意の光のフルカラーホログラムを単一露光で取得で き、応用の提案も増加している.本節では、現在までに 得られている成果に鑑みた IDH の将来展望を論じる. IDH システムのサイズと計測性能の関係と、将来に考え 得る応用展開先を Fig. 2 に示す. IDH は既存の光学機器 に、ドッキングしてホログラム記録の機能を与えること ができる. IDH システムのサイズと性能は比例する傾向 にあり、用途によってはコンパクト化を優先する必要が ある.例えば顕微鏡や高速度カメラ等の先端計測機器へ 応用展開する時、性能を重視して系全体が大きくなるこ とは比較的許容される.一方で、携帯電話内のカメラな どボードカメラへの応用、機械装置のセンサ、車載カメ ラ、ドローン等の軽量な移動体に搭載されるカメラ、一

Fig. 2 Prospective applications of IDH considering the size of the optical system.

眼レフカメラ等への応用では、サイズ、重量に制限が掛 かる.応用展開を考える時、性能だけでなくサイズ、重 量など、用途に応じて求められる光学系の性質が異なる ため、今後は応用先に適合する形で IDH システムを設 計することは重要な研究課題になる. もちろん, 多次元 情報を一括記録できるホログラフィの強みから、先端計 測機器への展開は有望な応用先であるため、性能を重視 しユニークな計測機器を社会へ提供することも重要な研 究課題である.一方で、コンパクト化により適用範囲が 飛躍的に拡大するため、コンパクト化且つ高性能化を達 成することも IDH の研究の方向性に挙げられる.筆者 はイメージセンサ上に IDH 光学系を集積することを志 向しており、手のひらサイズに収まる IDH 光学系をホ ロセンサと名付けている^{14,31,32)}. イメージセンサに IDH 光学系を集積化し、イメージセンサがホログラム記録の 機能を標準搭載する、という究極的な目標が達成されれ ば、あらゆる光学測定の場面で貢献できると期待される. そこで筆者は、IDH の発展の一つの方向性として「ホロ センサ構想」を提案する. Fig.3に, IDHの考え得る研 究展開先をまとめる. Fig.2 ではサイズと計測性能で分 類したのに対し、Fig.3では科学研究か産業応用か、ユー ザを含め集まる専門家の多様性に応じて展開先の幅が変 わってくることを示す.筆者の様な光学分野の研究者が IDH の基礎原理を研究する時は、光学分野の少人数の研 究グループで完結する.一方, IDH を社会へ提供する際 には、IDH を観察系として使う異分野の研究者、または IDH システムを洗練させる企業の存在が必要不可欠と なる. 例えばホログラフィの顕微鏡への応用は長い年月 を掛けて取り組まれ、生命科学分野等の異分野の研究者 との共同研究を通じて具体的な価値が年々示されてきて

いる。また、高速度イメージングへの展開においては高 速度カメラメーカの力添えが必要不可欠で、計測対象や 求められる記録速度,空間性能などに応える様,柔軟な 設計を行なうことが方向性として考えられる. この様な 展開は IDH においても同様で、そしてレーザー光ホロ グラフィでは困難だった自発光体や自然な照明光の計測 に対して展開されるものと考えられる. また, 自然な光 のホログラフィック計測が可能になった事から、 今まで 考えられてこなかった車載カメラ、ドローン等の軽量な 移動体に搭載されるカメラ等の、機械装置における画像 計測機器,一眼レフカメラや放送用映像機器,さらには 携帯電話のカメラ等への応用展開の道が拓かれる.機械 装置の眼としてホログラフィを活用する、いわばホログ ラフィックマシンビジョンへの展開を考える時、光学の 研究グループで完結する事は無く,機械工学,電子工学, 情報科学の専門家や、関係する光・電子デバイスを開発・ 製造している企業の協力が必須である。長い道のりと数 多くの人物との交流が必要不可欠であるが,世界中のイ メージセンサにホログラムセンシングの機能を与え、イ メージセンサが定量3次元計測の機能を標準装備する事 をホロセンサ構想の目標と考える時、取り組む価値ある 方向性であると考えられる. 例えば携帯電話のカメラシ ステムに導入すれば,誰もが手元に3次元計測機器を持 ち,日常における3次元(動画)計測が常識になる.また, 光学定盤上で長年研究開発されてきた光干渉計測技術を, 広く社会に提供する機会にも繋がる. 例えば、光波の位 相という極めて高感度,高分解能な3次元形状,変位, 加速度計測が可能な物理量をもって、圧倒的な精密計測 を達成する事により、社会へ新しい計測の形を提供する 事も可能になると考えられる.

Fig. 3 Schematic of "holosensor vision". The direction of applications of IDH and holosensor depends on the field of researchers and companies.

5. おわりに

自然光デジタルホログラフィの世界的な研究開発状況 を紹介し、現在までの研究成果に基づいて、将来展望に ついて論じた.3次元空間や多様な物理情報を1回の露 光で同時記録というホログラフィの特徴に加え、自然光 でもホログラム記録可能という IDH の特徴から,先端 計測機器へ展開することは極めて有望な応用と考えられ る.特に、グローバルシャッタ型の多次元動画計測機器 として、応用展開の道を探る事は有望視される. その一 方で,光学定盤,暗室,レーザー光源を必須とせず,さ らには手のひらサイズまたはイメージセンサ上に光学系 を集積可能という特徴から、今までホログラフィで考え られてこなかった、自動車、ドローン等の機械装置、さ らには携帯電話などの移動体にホログラフィを搭載させ るという展開さえ現実味を帯びている. IDH が今後どの ような発展を遂げるかは、IDH にどのような分野の研究 者や企業が集まるかに大きく依存する.光学研究者とし てIDHの性能を上げる研究や各種のデモンストレー ションに努めながら、技術の潜在的能力を引き出すため により多くの分野の研究者,企業人が集まる事を願う.

謝 辞

関係する論文の共著者,研究をご支援下さった皆様に 御礼申し上げます.本研究の一部は三菱財団 (202111007),物質・デバイス領域共同研究拠点基盤共 同研究(No. 20224020),JSTさきがけ(JPMJPR16P8), JSPS 科研費(18H01456)の助成を受けて行われた.

参考文献

- 1) D. Gabor: Nature 161 (1948) 777.
- 2) E. N. Leith, and J. Upatnieks: J. Opt. Soc. Am. 52 (1962) 1123.
- 3) 久保田 敏弘:新版ホログラフィ入門-原理と実際-(朝倉 書店, 2010)
- 4) L. H. Enloe, J. A. Murphy, and C. B. Rubinsten: B. S. T. J. briefs **45** (1966) 333.
- 5) J. W. Goodman and R. W. Lawrence: Appl. Phys. Lett. 11 (1967) 77.

- 6) T.-C. Poon: J. Opt. Soc. Am. A 4 (1985) 521.
- 7) L. Mugnier and G. Sirat: Opt. Lett. 17 (1992) 294.
- 8) K. Yoshimori: J. Opt. Soc. Am. A 18 (2001) 765.
- 9) M. Takeda, W. Wang, Z. Duan, and Y. Miyamoto: Opt. Express 13 (2005) 9629.
- 10) J. Rosen and G. Brooker: Opt. Lett. 32 (2007) 912.
- 11) B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, and M. H. Wu: Opt. Lett. 22 (1997) 1506.
- 12) M. Liebel, N. P.-Perez, N. F. Hulst, and R. A. Puebla: Nat. Nanotech. 15 (2020) 1005.
- 13) M. K. Kim: Opt. Express 21 (2013) 9636.
- 14) T. Tahara: Opt. Express 30 (2022) 21582.
- 15) J. Rosen and G. Brooker: Nat. Photon. 2 (2008) 190.
- 16) G. Brooker, N. Siegel, J. Rosen, N. Hashimoto, M. Kurihara, and A. Tanabe: Opt. Lett. 38 (2013) 5264.
- 17) J. Rosen, A. Vijayakumar, M. Kumar, M. R. Rai, R. Kelner, Y. Kashter, A. Bulbul, and S. Mukherjee: Adv. Opt. Photon. 11 (2019) 1.
- 18) J. Hong and M. K. Kim: Opt. Lett. 38 (2013) 5196.
- 19) T. Tahara, T. Kanno, Y. Arai, and T. Ozawa: J. Opt. 19 (2017) 065705.
- 20) A. Marar and P. Kner: Opt. Lett. 45 (2020) 591.
- 21) T. Tahara, Y. Kozawa, A. Ishii, K. Wakunami, Y. Ichihashi, and R. Oi: Opt. Lett. 46 (2021) 669.
- 22) N. Siegel and G. Brooker: Opt. Express 29 (2021) 15953.
- 23) Y. Kashter, A. Vijayakumar, Y. Miyamoto, and J. Rosen: Opt. Lett. 41 (2016) 1558.
- 24) M. Liebel, J. O. Arroyo, V. S. Beltrán, J. Osmond, A. Jo, H. Lee, R. Quidant, and N. F. Hulst: Sci. Adv. 6 (2020) eabc2508.
- 25)X. Quan, M. Kumar, O. Matoba, Y. Awatsuji, Y. Hayasaki, S. Hasegawa, and H. Wake: Opt. Lett. 43 (2018) 5447.
- 26) T. Tahara, Y. Zhang, J. Rosen, V. Anand, L. Cao, A. Ishii, Y. Kozawa, R. Okamoto, R. Oi, T.-C. Poon, *et al.*: Appl. Phys. B **128** (2022) 193.
- 27) T. Tahara, Y. Kozawa, and R. Oi: Opt. Express 30 (2022) 1182.
- 28) T. Tahara, A. Ishii, T. Ito, Y. Ichihashi, and R. Oi: Appl. Phys. Lett. 117 (2020) 031102.
- 29) T. Tahara, T. Koujin, A. Matsuda, A. Ishii, T. Ito, Y. Ichihashi, and R. Oi: Appl. Opt. **60** (2021) A260.
- 30) T. Tahara, T. Koujin, A. Matsuda, Y. Kozawa, Y. Ichihashi, and R. Oi: OSA Digital holography and 3-D imaging 2021 (2021) DTu6H.5.
- 31) T. Nobukawa, M. Maezawa, Y. Katano, M. Goto, T. Muroi, K. Hagiwara, and N. Ishii: Opt. Lett. 47 (2022) 2774.
- 32) Y. Kim, S. Park, H. Baek, and S.-W. Min: Opt. Express **30** (2022) 902.
- 33) T. Tahara and R. Oi: OSA Continuum 4 (2021) 2372.
- 34) T. Tahara: Front. Photonics 2 (2022) 829139.
- 35) T. Tahara, Y. Kozawa, A. Ishii, and R. Okamoto: *Proc. 3D Image Conf. 2022*, (2022) p. 2–1 (in Japanese).
 - 田原 樹,小澤 祐市,石井 あゆみ,岡本 亮:3 次元画像コ ンファレンス 2022 講演予稿集 (2022) 2-1.