

極限レーザー核科学研究所(ルーマニア)の現状

田中 和夫^{1,2}, Sydney GALES¹, Calin A. UR¹, Constantin IVAN¹, Ioan DANCUS¹, Catalin MATEI¹, Domenico DORIA¹, Dimiter L. BALABANSKI¹, Ovidiu TESILEANU¹, Theodor ASAVEI¹, Septimiu BALASCUTA¹, Andrei BERCEANU¹, Mihail CERNAIANU¹, Catalin CHIOCHIU¹, Mihai CUCIUC¹, Bogdan DIACONESCU¹, Petru GHENUCHE¹, Dan GHITA¹, Marius GUGIU¹, Alexandru MAGUREANU¹, Iani MITU¹, 中宮 義英¹, Viorel NASTASA¹, Liviu NEAGU¹, Florin NEGOITA¹, Jian F. ONG¹, Vanessa R. M. RODRIGUES¹, Madalin ROSU¹, Nicoleta SAFCA¹, Deepak SANGWAN¹, 瀬戸 慧大^{1,3}, Klaus M. SPOHR¹, Dan STUTMAN¹, Maria TALPOSI¹, Catalin TICOS¹, Paolo TOMASSINI¹, Lucian TUDOR¹, Daniel URSESCU¹, 本間 謙輔 ⁴ ¹極限レーザー核科学研究所(Reactorului St., No. 30, Magurele, ILFOV 077125, Romania) ²大阪大学レーザー科学研究所(〒 565-0871 大阪府吹田市山田丘 2-6) ³日本原子力研究開発機構(〒 914-8585 福井県敦賀市木崎 65 号 20 番地)

4広島大学大学院先進理工系科学研究科(〒739-0046広島県東広島市鏡山1-3-1)

Current Status of Extreme Light Infrastructure: Nuclear Physics (Romania)

Kazuo A. TANAKA,^{1,2} Sydney GALES,¹ Calin A. UR,¹ Constantin IVAN,¹ Ioan DANCUS,¹ Catalin MATEI,¹ Domenico DORIA,¹ Dimiter L. BALABANSKI,¹ Ovidiu TESILEANU,¹ Theodor ASAVEI,¹ Septimiu BALASCUTA,¹ Andrei BERCEANU,¹ Mihail CERNAIANU,¹ Catalin CHIOCHIU,¹ Mihai CUCIUC,¹ Bogdan DIACONESCU,¹ Petru GHENUCHE,¹ Dan GHITA,¹ Marius GUGIU,¹ Alexandru MAGUREANU,¹ Iani MITU,¹ Yoshihide NAKAMIYA,¹ Viorel NASTASA,¹ Liviu NEAGU,¹ Florin NEGOITA,¹ Jian F. ONG,¹ Vanessa R. M. RODRIGUES,¹ Madalin ROSU,¹ Nicoleta SAFCA,¹ Deepak SANGWAN,¹ Keita SETO,^{1,3} Klaus M. SPOHR,¹ Dan STUTMAN,¹ Maria TALPOSI,¹ Catalin TICOS,¹ Paolo TOMASSINI,¹ Lucian TUDOR,¹ Daniel URSESCU,¹ and Kensuke HOMMA⁴

IIII TICOS, Faoio TOMASSINI, Luciali TODOK, Dalilei OKSESCO, aliu Kelisuke HOMI

¹Extreme Light Infrastructure-Nuclear Physics, Reactorului St., No. 30, Magurele, ILFOV 077125, Romania ²Institute of Laser Engineering, Osaka University, Yamada-oka 2-6, Suita, Osaka 565-0871, Japan

³Japan Atomic Energy Agency, Kizaki 65-20, Tsuruga, Fukui, 914-8585, Japan

⁴Graduate School of Advanced Science and Engineering, Hiroshima University Higashi Hiroshima, Hiroshima 739-0046, Japan

(Received February 24, 2023)

The construction of large laser institutes with ultra-intense laser systems has been approved by the European Commission for a structural fund of about 850 million euros for 2011 ~ 2012, to be built in the Czech Republic, Hungary, and Romania. This challenging proposal is the result of the invention of chirped-pulse amplification by Dr. Gerard Mourou (France) and Prof. Donna Strickland (Canada) [1]. Based on recent technological advances toward the realization of ultra-intense laser fields, their focused intensity $I_0 \sim 10^{23}$ W cm⁻² or more is expected to be reached. With the aim of making a broad contribution to the national, European, and international scientific community, Romania has initiated the construction of the Extreme Light Infrastructure -Nuclear Physics (ELI-NP) in Magurele near the capital is established under Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH). The mission of ELI-NP is to cover scientific research at the frontier of knowledge, including two areas: the first is the study of nuclear photonics, high-field quantum electrodynamics, and lasers related to vacuum effects using the high power laser system (HPLS) of 10 PW output. The second is the establishment of inverse Compton backscattering phenomena and unexplored nuclear physics phenomena by the high energy gamma system making use of collisions of high-brightness, intense γ -ray beams (E = 19.5 MeV) with intense lasers.

Key Words: Extreme Light Infrastructure -Nuclear Physics (ELI-NP), Ultra-intense laser, Dark matter searching, Electron/ion acceleration, Nonlinear quantum electro dynamics (QED)

1. はじめに

現代の高出力レーザーシステムの時代は、1986年に D. Strickland と G. Mourou¹⁾が開発したチャープパルス増幅 (CPA)という画期的な技術革新によって始まり、この業 績により二人は 2018年のノーベル物理学賞の栄誉に輝 いた. ルーマニアのExtreme Light Infrastructure for Nuclear Physics (ELI-NP)研究所はエネルギー増幅された レーザーパルスを数十フェムト秒のパルス幅まで圧縮し て得られる 10 PW 出力のメインレーザーシステムの設 置・稼働が完了しており^{2-4),†1}、近くこれをミクロン径ま で集光することで 10²³ W/cm² のレーザー強度をユー ザーに提供する. このような強度を持つレーザーシステ ム(運転開始済)と従来の加速器技術に基づく 20 MeV の ガンマ線源(建設中)を利用することで、高強度レーザー 科学の新領域を開拓する.

ELI-NP は、高出力レーザーシステム(High Power Laser System: HPLS)の旗艦施設として、世界中の科学者 に高強度電磁場実験環境を提供することになる。ELI-NP の HPLS は 2 つの独立したレーザーアームセグメン トから成り、この 2 本のレーザー出力はそれぞれ最大 10 PW(10¹⁶ W)である⁵⁾.

HPLS を用いることで従来は RF 加速器で得られた高 エネルギー電子を、レーザー航跡場加速法によって数十 GeV という電子エネルギーをわずか数 cm の加速距離で 得ることができるようになる。また、レーザー・物質相 互作用を通じて得られる高エネルギー陽子や重イオンの 高密度粒子バンチ生成過程を制御できれば、それらを二 次粒子線源として応用利用できるようになり、被照射物 内での核分裂・核融合反応の調査や、医療用放射性同位 元素の効率的生産や核関連診断装置の改良につながる. このような粒子生成実験は、関連する天体現象の地上で の模擬実験として捉えることもできる. そのような視点 に立って、宇宙ミッションにおける生体への放射線の影 響の研究も行っている. さらに位相コントラスト X 線 イメージングの新しいスキームにより、高解像度の医療 観察を可能にする計画も進められている⁶⁾.ELI-NP の HPLS パルスを極限まで集光することで、高強度レー ザーを照射された純粋な真空から物質や反物質がどのよ うに生成されるかを研究することも予定されている⁷⁾.

上記 HPLS に加えてコンプトン後方散乱過程を利用した高輝度・高強度可変エネルギーガンマ線システム(最大ガンマ線エネルギー19.5 MeV)も設置が進められている。ガンマ線システムについては設置が 2023 年以降になることから本稿では割愛させていただく. Fig.1 に実験棟の外観を示す。以下では、ELI-NP のレーザーシステム(HPLS)について説明する。

Fig. 1 ELI-NP Experimental Building.

2. HPLS システム概要

HPLSは、2010年に出版されたELI-白書^{†1}で提案された研究提案に呼応し、高強度レーザープラズマ研究の地平を切り拓き、さらにその先へ進めるように設計された。HPLSレーザーパルスは、230Jまで増幅した後にパルス圧縮し、ピーク出力10PWのフェムト秒パルスの状態で、直径80cmの真空チューブ配管を通じて実験エリアにある大型真空実験チャンバーに導かれる。

現在, Elから E9 と名付けられた計9つの実験エリア が構築されている.この実験エリアでは、独立に実験準 備を進めることができ、各エリアでレーザービームもし くはガンマビームを使用可能である.E7エリアでは、 レーザービームとガンマビームの同時照射が可能な配置 となっている.

レーザーシステムの建設・設置は、パリとブカレスト に拠点を置き、最先端のレーザー技術を提供する世界有 数の企業であるタレスグループが担当した. HPLS は、 40 m×70 mのレーザー室(クリーンルーム)に設置され ており、3 段階の増幅器チェーンで構成されている. 各 段階の出力をビームラインとして使用でき、公称ピーク パワーは、100 TW、1 PW、10 PW となる、3 つのビー ムラインはすべてデュアルアーム構造で、レーザー種光 は2本のレーザーアームの間に位置する一つのレーザー 発振器から供給されている.

高出力を実現するために、最新のチタンサファイアク リスタルと専用のパルス圧縮器を用いた光パラメトリッ クチャープパルス増幅(OPCPA)フロントエンドが使用 されている.分離された2つのレーザーアームからの2 つの高出力レーザーパルスを位相を合わせたコヒーレン ト結合することで、将来40 PWの出力を得ることが準 備研究されている.

ELI-NP の実験エリア全体のレイアウトを Fig. 2 に示 す. E1, E2, E4, E5, E6, は、レーザー照射専用実験エリ

^{†1} The ELI Nuclear Physics Working Groups, The White Book of ELI Nuclear Physics, 2010 URL: https://www.eli-np.ro/whitebook.php.

Fig. 2 High Power Laser System and Experimental Areas. E1, E2, E4, E5, E6, are dedicated laser irradiation areas; E3 is a positron irradiation area; E7 is an area for simultaneous laser and gamma-ray beam irradiation; and E8 and E9 are the gamma-ray irradiation areas.

アで、E8,E9は、ガンマ線照射実験エリアとなる。E7 はレーザーとガンマ線ビーム同時照射実験エリアであり、 E3はガンマ線システム内のモジュールで生成された陽 電子の照射実験エリアである。HPLSレーザー室の床は、 コンクリート製で建物の壁とは独立しており、約1000 基の免振ダンパーにより床全体を免振している。

Table 1 は, HPLS の 10 PW 出力レーザーに関するコ アパラメータをまとめたものである. 表中には, レーザー 中心波長と波長範囲, パルス時間幅, ビーム直径, スト レール比, ビームポインティング安定性が示されている. ストレール比は, 理想的な回折限界を1と定めて集光能 力を数値化したもので, 例えば 0.95 とは, 理想値に対

Table 1 HPLS Main Parameter. Energy, central laser wavelength, spectral bandwidth, pulse duration, beam diameter, Strehl ratio, pointing stability and beam height are shown.

	min	max	unit
Energy/pulse	150	225	J
Central wavelength	814	825	nm
Spectral bandwidth (FWHM)	55	65	nm
Spectral bandwidth (at nearly zero level of intensity)	120	130	nm
Pulse duration (FWHM)	15	22.5	fs
FWHM beam diameter/Full aperture beam diameter	450/550		mm
Repetition rate	1		pulse/min
Strehl ratio	0.8	0.95	
Pointing stability	2	5	μrad
Beam height to the floor	1500	1510	mm

^{†2} https://www.youtube.com/watch?v=KyjwKXwYZDM

して 95% の集光能力に対応する.

2019 年初頭から 2020 年に行われたテスト^{†2}では,各 アームですべての増幅がなされた後のレーザーパルスエ ネルギーが,公称出力に必要な 250 J を超えたことが確 認された.このテストでは,10 ショットが1分ごとに 連続で10 ショットが実施された.3 PW のレーザー出力 試験では,ストレール比 S=0.95 が確認された.

最近の10 PW レーザーシステム調整では、アライン メントモードで3 µm 以下の集光スポットが確認された. フルパワー運転でこのスポット径に集光できる場合、そ の強度は、10²³ W/cm² を超えることになる.10 PW 出力 の場合、1 分間に1回の照射が可能となる.1 PW、 100 TW の場合それぞれ1 ヘルツ、10 ヘルツ照射が可能 となる.

レーザービーム伝送系(Laser Beam Transport System: LBTS)は、HPLS と 5 つのターゲット領域 El, E4, E5, E6, E7 との間のインターフェースを構成する. Fig.2 に示す ように、レーザーパルスは HPLS レーザー室から LBTS を通じて各実験エリア内の大型真空チャンバーに運ばれ る. LBTS は、レーザービームの折り返しミラーと真空 システムを含むいくつかのサブシステムから構成されて いる. 真空システムは直径 80 cm のパイプ. ゲートバル ブ、ポンプなどから成り、レーザーパルスの伝搬経路に 沿って高真空状態を保持している。システムの複雑さを 避けてメンテナンスの効率化を図るため、2本の10PW レーザーパルスは最小限のミラー枚数で構成された光路 を経て実験エリアに運ばれる、大口径平面ミラーとそれ に対応するモーションシステムにより、実験チャンバー の入口でビームを高精度に位置決めすることができる. アライメント装置と診断装置により、LBTS 内でのビー

ム位置決めが可能となる.LBTSの制御システムは、各 実験ヘリアへのビーム割り当てと真空制御を行う事が出 来る.

実験エリア E4 ではパルスエネルギー2.5 J, パルス幅 22.5 fs で 100 TW 出力の HPLS レーザーパルスを用いて, ミラーコーティング・ターゲットのレーザー誘起損傷閾 値(LIDT)を調べる実験キャンペーンが実施された(2020 年 3 月). 1 PW パルスは実験エリア E5 においてコミッ ショニング実験で使用されており, 将来的には E7 にも 割り当てられる.

ガンマ線システムからのガンマ線ビームは,実験エリ ア E8,E9 に提供される.実験エリア E7 では,HPLS レー ザーパルスと 19.5 MeV の高強度ガンマ線ビーム(直線 偏光 95% 以上)を高度に組み合わせて核物理実験を行う ことが可能となる.加えてガンマ線システムと関連する 実験エリア E3,E5 も Fig.1 に示されている.

Table 2 には、HPLS に関連する 5 つの実験エリアの概 要と、研究テーマ、および利用可能な検出器システムの 選択を示す.集光鏡の f ナンバー、集光スポット強度の 90% に相当する直径 d、無次元レーザーパラメータ a の 達成可能な最大値などのレーザーコア・パラメータも記 載している.短焦点ミラーと長焦点ミラーが実装されて いる.

3. HPLS コミッショニング実験

コミッショニング実験は、ELI-NPのレーザー装置が、 当初設計されたとおりの性能をだしているかを確認する ことが目的である.実験は、内部の研究者と外部の専門 研究者で構成されるチームが担当する.既に本稿執筆時 点で,100 TW 及び 1 PW レーザー出力のコミッショニ ング実験が実施された.100 TW レーザー出力の実験エ リアでは,電子加速およびダークマター検出予備実験が, また 1 PW の実験エリアでは,電子・イオン加速,ガン マ線変換効率などの実験が実施された.このうち,本稿 では,100 TW 実験の電子加速実験とダークマター検出 予備実験について述べる.

3.1 電子加速実験

100 TW レーザーパルスを使用した電子加速実験用 チャンバーの内部を Fig.3 に示す.100 TW レーザーパ ルスの光路は赤色で示されており,f/6 のパラボラミラー により集光されたレーザーパルスをガスジェットター ゲットに照射しまた.赤色の細い光路で示されているの は光学プローブで,ガスジェットに進入する100 TW レーザー光の集光の様子をシャドーグラムでモニターす るために使用された.レーザー集光されたガスジェット の出口側には,電子スペクトロメータが配置され,加速 電子のエネルギースペクトルを測定した.

実験で得られた加速された電子スペクトルを Fig. 4 に 示す. Fig. 4(a) は、電子スペクトロメータで観測された データとなる. Fig. 4(b) に示すように 114 MeV あたり に複数の明確なピークが現れた. ガスジェットの組成は、 He であり、ジェット噴出圧力は、 $10 \sim 20$ 気圧を使用し た. He に N₂ ガスを 2% 入れたガスジェットターゲット を用いた際には、幅広いエネルギースペクトルが観測さ れた.

Fig. 4(c) に示す白黒写真は、ガスジェット中を進む レーザーによる加速電子バンチの自己集束(白い線状部 分)を捉えており、約6mmのチャンネル領域にレーザー

Experimental Area	Experimental Theme	Typical Diagnostics	Laser Parameter
HPLS 10 PW (+1 PW)			
E1	Solid target	Thomson parabola & Gamma spectrometers	<i>f</i> /2.7
	Nuclear Physics	Electron/positron spectrometer	Spot size $\leq 3.5 \mu m$
	High brightness, high energy ion	Csl Spectrometer	$a_0 = 220$
E6	Gas target		<i>f</i> /54
	QED, Nuclear Physics	GeV Electron spectrometer	Spot size $\leq 60 \ \mu m$
	High energy electron (> GeV)	Laser optical probe	$a_0 = 16$
HPLS 1 PW			
E5	Medical application	Thomson parabola & Gamma spectrometers	<i>f</i> /3.5
	Nuclear Physics	Electron/positron spectrometer	Spot size $\leq 5 \mu m$
	10 PW prelimary test	Csl Spectrometer	$a_0 = 50$
E7	Laser + Gamma collision		<i>f</i> /15
	QED, Nuclear Physics	Gamma polari calorimeter	Spot size $\leq 18 \mu m$
	Isomer production		$a_0 = 12$
	Pair production (electron/positron)		
HPLS 100 TW			
E4	Fundamental Physics	Electron spetrometer	<i>f</i> /6
	QED, <i>γ</i> - <i>γ</i> scattering	High sensitive detector for scattered light	Spot size $\leq 8 \mu m$
	Dark matter search		$a_0 = 10$

Table 2 Experimental area, Exp. theme, Diagnostics, and Laser parameter.

Fig. 3 Experimental Setup for Laser Acceleration of Electrons100 TW. Laser beam is shown in bold red line, guided to the gas jet target via the parabolic mirror. The thin red line shows a probe laser path beam for plasma diagnostics to observe the channeling in the gas jet.

Fig. 4 Accelerated Electron Spectrum by 100 TW Laser Pulse. (a) Raw data of the electron spectrum. Along the horizontal direction, the spectral spots in white shows the electron spectral peaks at around 110 MeV. (b) The spectrum shows sharp peaks between 110 and 114 MeV. He is used as the gas target. (c) Shadowgram indicates a stable laser channeling (LWFA) in the gas jet target as a white line.

航跡場が形成されている.電子は,この航跡場に乗って 前方に加速された.

3.2 ダークマター探索予備実験

電子や陽子・中性子に代表される通常物質は、宇宙に 存在する物質のわずか5%程度に過ぎず、残りの23% をダークマター(暗黒物質),72%をダークエネルギー が占めているとの推定が、宇宙背景輻射の熱揺らぎ測定 (WMAP)によりなされている^{8),†3}. 実際に、重力レンズ 効果などダークマターの存在を示唆する様々な天体現象 が確認されているが、地上実験における直接観測には未 だ至っていない. ELI-NP における 100 TW レーザーを 用いた実験では、冷たいダークマターの候補と考えられ る 1eV 以下の質量をもった Axion-Like Particles (ALPs) の探索を目的としている. ALPs が関わる相互作用の反 応断面積の低さに対して、2つの異なる波長の高強度 レーザーを混合・集光することで、探索感度を飛躍的に 向上することが提唱された⁹⁾. その後,連続レーザーを 用いた原理検証実験を経て, Ti:Sapphire レーザー (800 nm)を生成光, Nd:YAG レーザー(1064 nm)を誘導 光として用いる手法が確立された10,11). このセットアッ プでは近赤外領域の異なる波長をもった二つの光を混合 するため、ALPs 起因信号光として、可視光領域波長の 光が終状態として選択される. Fig.5 に真空内四光波実 験の概略図を示す. 高強度レーザー, NdYAG レーザー を用いた四光波混合過程を利用している.

この実験は、SAPPHIRES Collaboration^{†4}の下,100 TW レーザーを使用して E4 実験エリアのコミッショニング 実験として実施された.Fig.6 には実験エリアの外観写 真を示す.

手前の大型光学テーブルの上には校正・アライメント 用のHe:Ne レーザー及びNd:YAG レーザーがあり, Nd:YAG レーザーは 1ns 以下のタイミングジッターで Ti:Sapphire レーザーと時間同期されている.実験エリア には高真空用(10⁻⁶ mbar)の大型真空容器と超高真空用

Fig. 5 Conceptual Layout of Four-wave Mixing Experiment in Vacuum for ALPs search.

^{†3} WMAP website by NASA: https://map.gsfc.nasa.gov/

^{†4} SAPPHIRES collaboration: C. Chiochiu,¹ M. Cuciuc,¹ G. Giubega,¹ T. Hasada,² M. Hashida,^{3,4} K. Homma,² F. Ishibashi,² T. Kanai,³ Y. Kirita,² A. Kodama,² S. Masuno,³ T. Miyamaru,² Y. Nakamiya,¹ L. Neagu,^{1,5} VRM Rodrigues,¹ MM Rosu,¹ S. Sakabe,³ J. Tamlyn,¹ SV Tazlauanu,¹ O. Tesileanu,¹ and S. Tokita,^{3,6}. ¹Extreme Light Infrastructure-Nuclear Physics (ELI-NP), Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering (IFIN-HH), ²Advanced science and engineering, Hiroshima University, ³Institute for Chemical Research, Kyoto University, ⁴Research Institute of Science and Technology, Tokai University, ⁵National Institute for Laser, Plasma and Radiation Physics (INFLPR), ⁶Graduate School of Science, Kyoto University.

Fig. 6 E4 Experimental Area for 100 TW Laser Experiments.

(10⁻⁸ mbar)の大型真空容器があり,実験目的に応じて適 宜選択可能である.真空内四光波混合実験では,レーザー パルスエネルギー増加とともに残余気体分子起因の背景 事象四光波混合が増加するため,100 TW 最大出力の実 験では背景事象抑制を十分に行った超高真空下での実験 が重要になる.

最初期の試運転段階においては、まず10⁻⁶ mbar 用の 真空容器を用いて実験が行われた。二つのレーザーの空 間オーバラップと時間同期を診断するためのデータを レーザーショット毎に逐次収集できるように実験装置が 組まれた.また、四光波混合からの信号光検出のための 光電子増倍菅が設置されており、検出器前段のバンドパ スフィルターアレイによって、四光波混合の信号光波長 領域のみ測定できるように構成された.

実際に行われた実測データとして,空間オーバラップ と時間同期の様子,それから,気体分子起因(背景事象) の四光波混合の信号光検出の様子を示す.

Fig. 7(a)が Ti:Sapphire レーザーの集光ビームプロファ イル, (b)が Nd:YAG レーザーのビームプロファイルで, (c)はその両者を同時に測定し,二つのビームが重なっ ていることを示したものとなる.典型的な集光スポット サイズは半値全幅(FWHM)換算で Ti:Sapphire レーザー が 9 µm, Nd:YAG レーザーが 18 µm 程度となった. Fig. 8(a)は Ti:Sapphire レーザーを高速 Si フォトダイ オードで, Nd:YAG レーザーを高速 InGaAs フォトダイ オードでそれぞれ測定し, ns オーダーでの時間同期を 示したものである. どちらのフォトダイオードも数百 ps の応答速度を持ち,5 ns のパルス幅を持つ Nd:YAG レーザーとの同期を診断する上で十分速い応答性能であ ることが分かる.Fig. 8(b)は光電子増倍管で測定した四

Fig. 7 Spatial Profile and Positioning of Incident Laser Pulses. (a) Ti:Sap laser at focus, (b) spatial profile of Nd:YAG laser at focus, and (c) simultaneous measurement of spatial profiles and positioning of Ti:Sa and Nd:YAG laser at focus.

Fig. 8 Incident Laser and Observed signals. (a) Laser pulse shape from Ti:Sapphire laser (red solid line) and Nd:YAG laser (green dotted line), and (b) waveform signal of the light from four-wave mixing mechanism.

光波混合の信号光であり、二つのレーザーが空間的にも 時間的にも同期しているときのみ現れる波形信号である. 時空間同期の調整及び校正のため、気体分子起因の四光 波混合背景事象の多い大気圧下にて測定したものとなる. ALPs 探索のための本測定は、10⁻⁶ mbar の高真空下にて 2 mJ の比較的低いレーザーパルスエネルギーから行わ れた. 京都大学化学研究所のT⁶レーザーにて、 SAPPHIES Collaboration下で実施した sub-mJ/mJ エネル ギーの ALPs 探索実験^{12,13)}と比較し、背景事象を理解し ながら、段階的にエネルギーをあげていく手法を取る予 定となっている.

4. ELI-NP の研究テーマ紹介

ELI-NPでは、さらに超高強度粒子(電子・イオン)と ガンマ線ビーム発生、イオン加速と非線形量子電気力学 (QED効果)^{14,15)}を調べることが予定されている.HPLS レーザーパルスを用いる粒子加速実験は、加速器技術に おける新しい時代の幕開けとなりうる.そのような新技 術による粒子加速現象と集光強度10²³ W/cm² 級のレー ザーパルスを組み合わせることで、原子核現象、粒子線 生成、非線形 QED などの科学的解明や社会的インパク トのある応用への道筋が目の前に広がりつつある.

4.1 イオン加速

PIC(particle-in-cell)シミュレーション¹⁶⁾を用いた理論 予測によれば, ELI-NP での陽子加速実験で,最大運動 エネルギー約 200MeV 以上かつエネルギー広がりは最 小の陽子バンチが得られる見込みである.これを最適化 するために,様々なイオン加速機構を研究することにな る.そのような研究によって二次イオン源の最適化が可 能となり,それを制御することで原子核物理研究などへ の応用につながる.予想される結果が得られれば,60 年以上前に Veksler¹⁷⁾が想定していたような,加速技術 の新しい時代が始まることになる.

物質とイオンの相互作用は複雑であるため、一連のパ ラメータによって区別される多様なイオン加速機構が存 在する. HPLS の場合、その強度 I_L 、関連するパルス時 間 τ_{LP} 、パルスの時間プロファイルがイオン加速機構に 関連している. 照射ターゲットに関する最も重要なパラ メータは、その電子密度 n_e と厚さ I_T となる. 過去 20 年 間に、いくつかの加速機構が実験的に確認された.また、 PIC シミュレーションにより、さらに新しい領域の存在 も予測されている.レーザー強度 I_L は、無次元レーザー 振幅 a_0 で表される.

$$a_{0} = \frac{eE_{0}}{m_{e}c\omega} = \sqrt{\frac{I_{L}(W/cm^{2}) \cdot \lambda^{2}(\mu m^{2})}{1.37 \times 10^{18}}}$$
(1)

ここで、 $e \geq m_e$ は電子の電荷と質量、cは真空中の光 の速さを示す. さらに、 E_0 、 λ 、 ω はそれぞれレーザー の最大電界振幅、波長、角周波数を示す¹⁸⁾. 各加速機構 はターゲットの厚さ l_T または無次元面密度 $\sigma = n_e l_T/n_{er}\lambda$ を用いて、スケーリング則で記述できる. Fig.8 は、現 時点での測定とシミュレーションに基づく加速度領域を 示している.

ELI-NP において重要な加速機構は、ターゲット法線 シース加速(Target Normal Sheath Acceleration: TNSA), クーロン爆発(Coulomb Explosion: CE), および, レーザー 輻射圧加速(Radiation Pressure Dominated Acceleration: RPDA)^{19,20)}となる.

これまでの所, TNSA は最も精力的に研究されている 加速機構である.この領域では、レーザー光はターゲッ トの前面と相互作用し、生成された相対論的な電子が ターゲットを縦断して裏面に移動することで生じるプラ ズマシースの強い電界でそこにあるイオンを加速する.

高強度レーザーを薄膜ターゲットに照射する場合は RPDA が主要な加速機構として登場し、ホールボーリン グ(Hole Boring: HB) またはライトセイル(Light Sail: LS) 効果を発現させる.この場合、電子はレーザー輻射圧に よって最初のレーザーサイクルの間に前方に押し出され、 イオンはこの電荷変位とそれに伴う強い電界に反応する. これにより、電子とイオンが同期して運動し、ターゲッ ト全体がレーザー照射中に連続的に加速され、相対論的 速度にまで達する(相対論的飛翔鏡).このとき、レーザー エネルギーのほとんどがターゲットイオンの加速に効率 よく使用される^{19,20}.

照射ターゲットが非常に薄く、レーザー波長よりも小 さい場合には CE による加速が予想されます. 十分な強 度のレーザー照射で原子からすべての電子を追い出すこ とができれば、電子よりも重い正電荷イオンがそこに留 まる. このとき、残されたイオンの強い静電場が CE を 誘発する. 具体的な CE 加速は、低温ガスジェットで作 られる小さなクラスターにレーザー照射することで実現 可能となる. ここで紹介したそれぞれの加速領域の境界 は明確ではなく、いくつかの加速機構が混在する領域が 存在することには注意が必要である.

数十ナノメートルの極薄箔のターゲットで $I_L > 10^{21}$ W/cm²の場合,相対論的誘起透明性(Radiation Induced Transparency: RIT)を考慮する必要がある. RIT が有効である場合,レーザーパルスからターゲット薄膜への運動量移行にはある程度の伝搬媒質の不透明度が必要であるため,物理現象全体を考慮したイオン加速効率にはある種の制限値がある.最近,このような問題が意識されたうえで,TNSA-RITの混成する手法で100 MeV

をもつ陽子が実験的に確認された.

10 PW レーザーパルスを集光して得られるレーザー強度 $I_L = 10^{23}$ W/cm²($a_0 \sim 220$)の電磁場で達成可能な陽子 エネルギーの見積りを行った.厚さ 800 nm の固体ター ゲットに対して PIC2D シミュレーションを実施した (Epoch コード²¹⁾を使用).その結果,ELI-NP で実験で は最大 400 MeV まで陽子の加速が可能であり,陽子の エネルギースペクトルが典型的なマックスウェル・ボル ツマン分布を示すことが示唆された.この領域でのレー ザーからガンマ線への変換の変換効率は約 14% と見積 もられた.この計算では、プリプラズマによるプラズマ 条件の詳細は含まれていない.

4.2 超相対論的電子加速

レーザー航跡場加速(Laser Wake Field Acceleration: LWFA)による超相対論的電子の生成は、QED 理論を検 証するツールとして、またレプトンやガンマ線を含む応 用として、プラズマ物理学の重要な新分野となっている. 田島氏とドーソン氏が最初にレーザー航跡場加速のアイ デアを提唱して以来²²⁾,様々な電子加速メカニズムの 研究が実施されてきた²³⁾.現在,ほとんどのLWFA 実 験は、電子を波に入射させる Wave Breaking, または Self Injection に基づいている. いわゆる「バブル」領域を 用いると、準単一エネルギー電子ビームを数十フェムト 秒のバンチで生成できることが示された.発生する加速 電場は 100 GeV m⁻¹ のオーダーであり、相互作用の条件 が理想的であれば、電子は数センチの距離を加速するこ とが可能で、結果として数 GeV の電子バンチが得られ ると考えられている.実験エリア E6 では、まず電子加 速の研究をスタートさせ、その後 QED 実験を行う予定 である. HPLSの2本のレーザーパルスは, f/54の長焦 点(32 m)球面鏡を電子加速に用い, f/3.5の短焦点(2 m) 放物面鏡を QED 実験に用いる. E6 でのコミッショニン グ実験は、GeV オーダーエネルギーの準単色電子ビー ムを光電荷で安定に生成することに特化したものになる. 使用するレーザーパルスは Table 2 に示すように,パル スエネルギー225 Jを 22.5 fs まで圧縮して 10 PW 出力に したものである. 集光ミラーが f/54の場合, 最適な LWFA には 100 fs 以上の長いレーザーパルス幅が必要に なる. 最適な加速では, 10 cm 程度の加速距離で 5 GeV を超えるエネルギーの電子ビームを生成することができ ると考えている、電子加速を担うガスセル内でのプラズ マチャネル生成は超短パルスレーザーによる干渉計測と シャドウグラム(影絵法)によって光学的にプローブされ、 その状態が観測される。また、電子スペクトロメータと X線検出器により電子バンチの電荷とベータトロン放射 が測定される、電子加速の後、ガスセルを通過したレー ザーパルスには残留エネルギーがあり、ガスターゲット から10 cm離れたところで10¹⁵ W/cm²のオーダーの レーザー残留強度がある.この値は、どのような材料に 対しても損傷しきい値を超えているため、レーザービー ムダンパーで残留レーザーパルスを処理することになる.

4.3 レーザー光からのガンマ線変換

レーザーパルスをターゲットに照射すると、投入され たレーザーエネルギーがイオン加速,電子加速,そして γ線/X線生成に分配されて消費される.この割合はレー ザー電磁場振幅 ao に依存して変化する.特にガンマ線 生成について考えると、高強度レーザーを照射された ターゲットは、電離して自由電子を発生させる.自由電 子は背景レーザー電磁場と相互作用して非線形トムソン 散乱をおこし、輻射光子エネルギー $\hbar\omega_{\gamma} = 0.3 \hbar\omega a_0^3$ にパ ワースペクトルのピークを持つ電磁波を放つ. HPLS の 場合, すなわち $\hbar\omega$ = 1.5 eV と a_0 = 200(10²³ W/cm² 級に 相当, (1)式を参照)の場合ならば hw, はガンマ線領域 であり、パワースペクトルの高エネルギー側には数百 MeVの光子も存在する.電子による輻射パワーが無視 できないほど大きくなると、電子運動には放射の反作用 の修正が必要になる.輻射光子が電子振動の外向きの運 動量成分を持つため、放射の反作用力が電子振動に対し て内向きに働き、電子運動の広がりを抑え込みます. こ のような集団現象の結果、この電磁輻射は部分コヒーレ ンスをもち、スペクトルは指数関数的になる.

近く ELI-NP で実施される実験では、 $I_{\rm L} = 10^{23}$ W cm⁻² のレーザー強度を用いる計画で、ピーク輝度 = 10^{25} ps⁻¹ mm⁻² mrad⁻²(1% BW)⁻¹ で 15MeV のガンマ線 ビームがえられると予測されている。10 PW のレーザー パルスを軽イオンターゲットに照射すると、ガンマ線へ の変換効率は 30% に達することが PIC シミュレーショ ンを通じて予測された²⁴⁾. このため 10 PW 運転の HPLS は光から γ 線への高効率な変換器だとみなせる。

4.4 非線形コンプトン散乱 / 放射の反作用

ひとつ前の小節では固体内から自由電子を取りだす手 順を踏んだ、ここでは高エネルギー電子と高強度レー ザーの衝突による非線形 QED 効果・非線形コンプトン 散乱として電子の輻射過程を考えてみる. 非線形コンプ トン散乱は 1960 年ごろから理論的に考察されていたが、 最先端の高強度レーザーシステムの登場でようやく実験 可能となったため、近年活発に研究されている物理過程 である.この物理過程はしばしば放射の反作用とも呼ば れている. 放射の反作用という言葉は電子が電磁輻射す れば、その運動量移行分だけ反作用が存在するという意 味で使用された.一方非線形コンプトン散乱はファイン マン・ダイアグラムで厳格に定義できる. ELI-NPでは 非線形コンプトン散乱 / 放射の反作用の基礎的な知見を 得るための実験を複数提案してきた。一つの案を具体的 に述べると、ガンマ線システムの線形電子線加速器から 取り出した 600~800MeV 程度の電子バンチを,電子か ら見て 155° 方向からやってくる 1.5 µm まで集光された 1 PW レーザーパルス(レーザー強度は 10²² W/cm² 級)と 衝突させて非線形コンプトン散乱を実現させる計画があ る25). 散乱前後の電子・レーザー光子・輻射光子の特 徴を追跡することで、理論から得られた散乱確率公式の 妥当性を調査する. このセットアップであれば 10⁵ 個の レーザー光子を超多光子吸収し(強い非線形性),また輻

射光子のスペクトルが古典論的なものから量子論的なものに移行すると理論的に予想されている.この非線形性・ 量子性の発現は従来の素粒子衝突実験では難しかったもので,高強度レーザーを衝突実験に使用することの利点 となる.実験に目を向けると磁石ベースのスペクトロ メータで散乱後の電子バンチのエネルギー分布を測定す る. また,ELI-NPで開発したGamma Polari-Calorimeter⁴⁾で輻射光子エネルギーだけでなく,偏光という別の指標を実験結果から取得する取り組みもなされている.偏光依存性に関連する理論的考察は26)で紹介した.入射粒子情報と上記の計測結果は散乱確率を与え, これによって理論に修正が必要か検討できるようになる.

高エネルギー光子を入射する実験も ELI-NP では提案 されており、その光源として非線形コンプトン散乱は重 要と考えられる.たとえば、回折限界近くまでレーザー 光を集光すると QED 真空はゆらぎはじめ、真空の誘電 率・透磁率が電磁場強度に依存した関数になる. 真空複 屈折がレーザー場による真空の非線形応答の一例である. 真空複屈折発現領域にに直線偏光した高エネルギー光子 を通すとその状態が変化することが予想されている.こ の QED 真空複屈折効果も未測定な物理過程であり、実 現させるには高強度レーザーと高エネルギーで偏光度が 非常に高いプローブ光子が必要となる²⁶⁾.小さい真空 複屈折率を有意な信号としてプローブするためには, ELI-NP に実装予定のガンマ線システムが提供できる光 子エネルギー(~20 MeV 程度)よりも, 高エネルギー(数 GeV 程度を想定)が必要である. ELI-NP では、レーザー 航跡場加速法で 10 GeV の電子バンチを生成し,その生 成電子と別の高強度レーザーを非線形コンプトン散乱さ せて数 GeV 級の光子を生成する実験を提案している. さらに、この光子を真空複屈折実験のプローブに使用す る予定となっている.このように, 偏光制御された高エ ネルギープローブ光子を得るという観点でも、非線形コ ンプトン散乱は重要なテーマといえる.

5 おわりに

ルーマニアの ELI-NP(極限レーザー核科学研究所)研 究所の建設は、欧州連合からの大型予算が認可された後、 ELI-ALPS(ハンガリー)、ELI-Beamlines(チェコ共和国) 研究所とほぼ同時に開始された.ELI-NP では、レーザー 装置の建設・試運転が終わり、コミッショニング実験や 外部ユーザー実験を通した本格運用テストの段階に入っ ている.本稿では、レーザー装置の概要、実験エリアの 機能、予定されている実験の紹介を行い、コミッショニ ング実験のうちレーザー電子加速とダークマター探索に 関する予備実験を紹介した.2023年には、10 PW レー ザーの本格的な運用に入る予定となっている.

参考文献

D. Strickland and G. Mourou: Opt. Commun. 56 (1985) 219.
S. Gales, D. I. Balabanski, F. Negoita, O. Tesileanu, C. A. Ur, D.

Ursescu, and N. V. Zamfir: Phys. Scr. 91 (2016) 093004.

- 3) S. Gales, K. A. Tanaka, D. L. Balabanski, F. Negoita, D. Stutman, O. Tesileanu, C. A. Ur, D. Ursescu, A. Andrei, S. Ataman, *et al.*: rep. Prog. Phys. **81** (2018) 094301.
- 4) K. A. Tanaka, K. M. Spohr, D. L. Balabanski, S. Balascuta, L. Capponi, M. O. Cernainau, M. Cuciuc, A. Cucoanes, I. Dancus, A. Dhal, *et al.*: Matter and Rad. Extremes 5 (2020) 024402.
- 5) F. Lureau, G. Matras, O. Chalus, C. Derycke, T. Morbieu, C. Radier, O. Casagrande, S. Laux, S. Ricaud, G. Rey, *et al.*: High Power Laser Science and Engineering 8 (2020) e43.
- 6) N. Safca, P. Ghenuche, C. A. Ur, and D. Stutman: UPB Sci. Bull. Series A **83** (2021) Iss.3.
- 7) C. K. Dumlu, Y. Nakamiya and K. A. Tanaka: Phys. Rev. D. 106 (2022) 116001.
- 8) E. Komatsu, J. Dunkley, M. R. Nolta, C. L. Bennett, B. Gold, G. Hinshaw, N. Jarosik, D. Larson, M. Limon, L. Page, *et al.*: Astrophys. J. Suppl. **180** (2009) 330.
- 9) Y. Fujii and K. Homma: Prog. Theor. Phys. **126** (2012) 531; Erratum: Prog. Theor. Exp. Phys. **2014** (2014) 089203.
- 10) K. Homma, T. Hasebe, and K. Kume: Prog. Theor. Exp. Phys. **2014** (2014) 083C01.
- 11) T. Hasebe, K. Homma, Y. Nakamiya, K. Matsuura, K. Otani, M. Hashida, S. Inoue, and S. Sakabe: Prog. Theor. Exp. Phys. 2015 (2015) 073C01.
- 12) K. Homma, Y. Kirita, M. Hashida, Y. Hirahara, S. Inoue, F. Ishibashi, Y. Nakamiya, L. Neagu, A. Nobuhiro, T. Ozaki, *et al.*: J. High Energ, Phys. **2021** (2021) 108.

- 13) Y. Kirita, T. Hasada, M. Hashida, Y. Hirahara, K. Homma, S. Inoue, F. Ishibashi, Y. Nakamiya, L. Neagu, A. Nobuhiro, *et al.*: J. High Energ. Phys. **2022** (2022) 176.
- 14) K. Seto, J. F. Ong, Y. Nakamiya, M. Cuciuc, M. M. Rosu, VRM Rodriues, O. Tesileanu, and K. A. Tanaka: High Energy Density Physics 38m (2021) 100919.
- 15) K. Seto: Prog. Theor. Exp. Phys. 2015 (2015) 023A01.
- 16) H. Daido, M. Nishiuchi, and A. S. Pirozhokov: Rep. Prog. Phys 75 (2012) 056401.
- 17) V. Veksler: Proc. Symp. CERN 1 (1956) 80.
- 18) S. C. Wilks, A. B. Langdon, T. E. Cowan, M. Roth, M. Singh, S. Hatchett, M. H. Key, D. Pennington, A. MacKinnon, and R. A. Snavely: Phys. Plasmas 8 (2001) 542.
- 19) S. V. Bulanov, T. Z. Esirkepov, M. Kando, A. S. Pirozhkov, and N. N. Rosanov: Physics-Uspekhi 56 (2013) 429.
- 20) M. Kando, AS. Pirozhkov, J. K. Koga, T. Zh Esirkepov, and S. V. Bulanov: Photonics 9 (2022) 862.
- 21) C. S. Brady and T. D. Arber: Plasma Phys. Cont. Fusion 53 (2011) 015001.
- 22) T. Tajima and J. M. Dawson: Phys. Rev. Lett. 43 (1979) 267.
- 23) E. Esarey, C. B. Schroeder, and W. P. Leemans: Rev. Mod. Phys. 81 (2009) 1229.
- 24) T. Nakamura, J. Koga, T. Esirkepov, M. Kando, G. Korn, and S. V. Blanov: Phys. Review Letter **108** (2012) 195001.
- 25) K. Seto: Rev. Laser Eng. 51 (2023) 337.
- 26) Y. Nakamiya and K. Homma: Phys. Rev. D96 (2017) 053002.