

繰り返し動作キロジュール級パルスレーザーによる 核融合研究への貢献と応用展開への期待

関根 尊史,加藤 義則,玉置 善紀,川嶋 利幸 浜松ホトニクス株式会社 中央研究所 産業開発研究センター(〒431-1202 静岡県浜松市西区呉松町 1820)

Contribution to Laser Fusion Research by Repetitive kJ-class Pulse Laser and Expectations of Application Development

Takashi SEKINE, Yoshinori KATO, Yoshinori TAMAOKI, and Toshiyuki KAWASHIMA

Industrial Development Center, Central Research Laboratory, Hamamatsu Photonics K.K., 1820 Kurematsu, Nishi-ku, Hamamatsu, Shizuoka 431-1202

(Received April 19, 2023)

This paper reviews the recent progress in the development of diode-pumped solid-state lasers (DPSSLs) with over 100 J pulse energy at a 10-Hz repetition rate and the feasibility of a 1 kJ-class DPSSL with a scaling concept on a helium gas-cooled multi-disk laser. The potential for contributions to laser fusion research using a 1 kJ-class DPSSL is also discussed. A construction and an operation of an integrated system, which consists of highly stable laser controlling, target production/supplying and plasma measurement/diagnostics, based on a 1 kJ by 10-Hz DPSSL boost-up the level of such core technologies of laser fusion reactors to TRL 7 or more. These technologies will become common for various future applications for high energy and high-repetition rate lasers.

Key Words: Laser, Laser fusion, DPSSL, High energy Laser

1. はじめに

1990年代から研究開発が進められてきた半導体レー ザー(LD)を励起源とした固体レーザー(Diode-pumped solid-state laser: DPSSL)は、レーザー加工を中心に応用が 進みニーズに応じて高出力化および高性能化が進められ てきた. 現在は連続波で動作するファイバレーザーの出 力は100 kW に達し、パルスレーザーにおいても様々な パルス幅で1kW を超える平均出力が実現されるに至っ ている†1,2. 特に近年は、加工方法に応じてレーザーのパ ルス幅や波長、繰り返し周波数などのパラメータを最適 化することが可能なパルスレーザーの技術開発が活発に 進められている。特に平均パワーが1kWを超え10J以 上のパルスエネルギーを有したパルスレーザーにおいて は、レーザー加工に留まらず医療や材料分析へ応用され るレーザー加速、更には未来のエネルギー源として期待 されるレーザー核融合など様々な応用展開へ繋がる技術 として研究開発が精力的に行われている1-7). このような

高エネルギーかつ高繰り返しレーザーは将来の国の産業 や科学技術を支える基盤として重要な技術と考えられ, 今後も長期的な視点に立った継続的な研究開発の推進が 求められる.

レーザー核融合の研究では、2022年12月に米国ロー レンス・リバモア国立研究所の国立点火施設(National Ignition facility: NIF)にて、3.15 MJのレーザー核融合出力 を達成し利得1.5倍を実証する大きな成果が報告され た¹³. 今回のレーザー核融合の物理実証を受け、今後は発 電炉に向けた研究開発が加速すると考えられる. NIFで はフラッシュランプ励起Nd: ガラスレーザーを用いてお り、繰り返し率が1日に2~3発と低く、電気からレー ザー光へのエネルギー変換効率も1%以下と低い.レー ザー核融合発電の実現には、10 Hz以上の繰り返し率で 10%以上の電気 - 光変換効率で動作が可能な DPSSL な どのレーザーが求められる. Fig.1に NIF におけるレー ザー核融合出力の推移と DPSSL の出力エネルギーの推 移を示す. 核融合出力は10年間で1000倍以上に増加し

^{†1} IPG Photonics: https://www.ipgphotonics.com/jp/products/lasers/high-power-cw-fiber-lasers

^{†2} TRUMPF: https://www.trumpf.com/ja_JP/products/laser/

^{†3} Laurence Livermore National Laboratory: https://www.llnl.gov/news/national-ignition-facility-achieves-fusion-ignition

Fig. 1 Progress of laser fusion output on NIF and DPSSL output in the world.

ているのに対し, DPSSL の出力は 20 年で 10 倍程度に留 まっている.

本稿では、世界の高繰り返しかつ高エネルギーレー ザーの開発動向について我々が行っている1kJ級レー ザーの要素技術開発を含め紹介し、それらのレーザー技 術が担うレーザー核融合研究への貢献とレーザー核融合 以外の応用展開への期待について概説する.

2. キロジュール級 LD 励起固体レーザー

2.1 世界の 100 J 級 LD 励起固体レーザー

Table 1 に近年日米欧で進められているナノ秒のパル ス幅でレーザーエネルギーが 100 J を超える DPSSL 開 発の状況を示す.世界をリードするのはラザフォード・ アップルトン研究所(英国)と HiLASE が共同で進めてい る DPSSL であり,2021 年に 146 J×10 Hz のレーザー出 力を達成した⁵⁾.浜松ホトニクスでは,これまでに 253 J × 0.2 Hz および 106 J×10 Hz 出力を達成し,現在 250 J× 10 Hz 動作を目指して開発を行っている (Fig. 2)^{6)†4,5}.こ の 2 機関では,LD 励起低温冷却 Yb:YAG セラミクス レーザーの開発を行っている.一方,ローレンス・リバ モア国立研究所では,102 J×3.3 Hz の出力を LD 励起

Table 1 100 J class DPSSL development in	the	world
--	-----	-------

	Lawrence Livermore Nat. Lab.	HiLASE & Rutherford Appleton Lab.	Hamamatsu Photonics K.K.	
Output energy	102 J	146 J	253 J	106 J
Repetition rate	3.3 Hz	10 Hz	0.2 Hz	10 Hz
Average power	330 W	1.46 kW	50.6 W	1.06 kW
Laser medium	Nd:glass	Yb:YAG ceramics	Yb:YAG ceramics	Yb:YAG ceramics
Amplifier concept	Multi disk	Multi disk	Multi disk	Multi disk
Coolant medium	RT helium	CT helium	CT helium	CT helium

Fig. 2 250-J laser system.^{†4,5}

Nd: ガラスレーザーで得ている²⁾. 同研究所では, 2025 年までに同レーザーを当初の設計の 200 J × 10 Hz へ増 強する計画を示している.

これらのレーザーは、レーザー媒質は異なるがヘリウ ムガス冷却マルチディスクレーザーという共通する方式 を採用している、この方式の最大の特徴は、繰り返し率 を維持したままエネルギーのスケーリングが可能なこと である. 概要を Fig. 3 に示す. ヘリウムガス冷却マルチ ディスクレーザーでは、板状のレーザー媒質を整列させ て, 広い面(端面)からレーザー光を入出射すると共に同 じ面にヘリウムガスを流しレーザー媒質を冷却する. こ の方式では、板状のレーザー媒質の厚さは同じままサイ ズを大きくすることで、光学薄膜の損傷を抑制できる レーザー光のフルエンス(単位面積当たりのレーザーエ ネルギー)を維持したままレーザーエネルギーの増加す ることができる.この時、レーザー媒質の厚さが同じま ま2つの端面から冷却することでレーザーエネルギーを 増加させてもレーザー媒質内の温度分布が大きく変わら ない構成であるということが、スケーリングを成り立た せる上で重要な要件となる. レーザー媒質を冷却する冷 媒には、レーザー光に吸収が無く透過波面に影響を及ぼ し難い気体が適していることから、比熱が高く熱伝導率 も高いヘリウムガスが用いられている.

2.2 キロジュール級レーザーの実現可能性 我々は, Table 1 にある 250 J × 0.2 Hz の実験結果と前

Fig. 3 Scaling concept of multi disk laser.

^{†4} Hamamatsu Photonics K.K.: https://www.hamamatsu.com/jp/ja/news/products-and-technologies/2021/20210628000000.html

^{†5} Hamamatsu Photonics K.K.: https://www.hamamatsu.com/jp/ja/news/products-and-technologies/2023/20230112000000.html

節のエネルギースケーリング則に基づき、1 kJ 級レー ザーの基本設計を行った⁶⁾.参考文献 6) では, 20 cm × 20 cm 程の Yb: YAG セラミクス 24 枚を LD により約 3.5 kJ で励起し175 K の低温ヘリウムガスで冷却するマ ルチディスクレーザー増幅器を構成し、300」のレーザー エネルギーを入力することで出力エネルギー1 kJ を得る 設計が示されている. この基本設計は実験結果に基づい ているため1kJレーザー実現の一つの指標となる.しか しながら、実現するためにはレーザー媒質である Yb:YAG セラミクスの大型化や励起用 LD の高出力化, 更には戻り光防止技術などいくつかのコンポーネントに おいて大きな課題がある.これらの技術的ハードルを低 減する方法として、現在の1kJ級 DPSSLの基本設計の レーザー効率を向上することが挙げられる. レーザーの 効率は、レーザーパターンの強度分布の均一性を高める ことで向上させることができる. 強度分布を均一化する ことで光学薄膜の損傷を抑制したまま平均フルエンスを 上げることができ、それによりレーザー媒質に蓄積され たエネルギーを取り出す効率を上げられるためである. その結果として現在の設計よりも小さなレーザーパター ンで1kJを出力することが可能になり、Yb:YAG セラミ クスのサイズを小さくすることができる。また必要な励 起用 LD のエネルギーも低減することができる. その他 にもレーザーの波面分布を均一化することで、光学薄膜 のダメージリスクを軽減することもできる. このように 1 kJ 級 DPSSL の基本設計をより実現し易い設計へアッ プデートすることが、既存の250Jレーザーの特性改善 により可能である.更に、セラミクスの大型化など周辺 技術の開発が進むことで、近い将来に1kJ 級 DPSSL の 実現は可能であると考えられる.

3. レーザー核融合研究への貢献

前節で示したレーザー技術の進展により1kJ級 DPSSL が実現されることは、将来のレーザー核融合炉を 具体的な規模感で議論できるようになるという意味で, 核融合用ドライバーの建設に向けた大きなマイルストー ンとなる.NIFと同等とのレーザー核融合の研究を行う には.10 kJ 級のレーザーを数百本備えた数メガジュール のレーザーが必要になる. NIF は間接照射方式であるこ とから、レーザー光をX線に変換する効率が掛かるた め、大きなレーザーエネルギーが必要となる⁸⁾. 一方、X 線に変換せずにレーザー光のエネルギーを直接爆縮に用 いる直接照射方式も研究が進められており、その中でも 爆縮と点火を別々のレーザー光で行う高速点火方式では 数百 kJ のレーザーエネルギーで核融合点火を実現でき るとされている⁹⁾. つまり1kJ級レーザーであれば数百 本.10kJ級レーザーであれば数十本で実現することがで きる. 既に NIF において 192 本のレーザーを制御する技 術が運用されていることから、数百本の1kJ級 DPSSL のレーザー制御は現実的に検討できる規模と言える.

繰り返し動作が可能な1kJ級 DPSSL を用いることで 大量の実験データを取得できるようになり,更に AI を 活用したデータ駆動型研究により直接照射方式のレー ザー核融合のプラズマ研究を飛躍的に加速することがで きる.このような高繰り返しレーザーを用いたレーザー 核融合研究では、質の高いデータを取得するために再現 性の高いプラズマ実験を高頻度に行うことを可能とする 高精度で高安定なレーザー照射技術を確立することが重 要となる.この技術の確立向け、まずは1~10本程度の 1kJ級 DPSSLで構成されるレーザー制御やターゲット 製造・供給、高繰り返しプラズマ計測・診断など工学的 な実現可能性を検証することができる統合システムを構 築することが有効と考えられる.

そこで本章では、この統合システムの構築により期待 できるレーザー制御技術、ターゲット製造・供給技術お よびプラズマ計測技術の発展について示す.

3.1 レーザー制御技術

統合システムが構築されることで発展が期待できる技術として、まず一つにレーザー制御技術が挙げられる. ターゲットの爆縮では、レーザーの特性を安定に保つための制御技術は極めて重要となる.統合システムにより ターゲット照射とプラズマ計測を同時に行うことで、 レーザーの集光スポットの強度分布を高精度かつ安定に 制御する技術開発を行うのと同時に、その集光スポット が与える爆縮への影響を評価することができる.集光ス ポットの強度分布の他にも、集光位置(ポインティング) やレーザーエネルギーやパルス波形の制御技術の発展も 期待できる.

統合システムを用いることで、上述の様なレーザー制 御技術が向上できるだけでなく、良好な爆縮を得るため に必要なレーザー特性のふらつきの許容範囲も明らかに することができる.また統合システムを長期間運用する ことで、1 kJ 級 DPSSL を構成する光学素子や LD, LD を 駆動する電源などの経年的な特性の劣化や寿命を評価で き、将来のレーザー核融合実験施設の建設に有用な知見 を得ることができる.

3.2 ターゲット製造および供給技術

統合システムの構築によりターゲットに関する技術も 大きな進展が見込まれる.統合システムでは大量にター ゲットを消費するため、ターゲットの量産化技術と低コ スト化技術の開発が必要になる.また、ターゲットの品 質は爆縮の特性に大きく影響するため、レーザー特性と 同様にターゲットのサイズや真球性、表面粗さ、球殻 (シェル)状のターゲットであれば膜厚などの品質を評価 する技術も必要になる.

ターゲット製造・評価に加え,ターゲットを連続で供 給する技術開発も極めて重要であり,統合システムの構 築で進展が期待できる技術となる.国内ではこれまで光 産業創成大学院大学を中心とした研究グループで連続し てターゲット供給する技術開発が進められ,これまでに 1 mmの中実球および 0.5 mmのシェルターゲットを1~ 10 Hz で射出する実証試験が行われてきた¹⁵⁻¹⁷⁾.統合シ ステムの構築により,これまでの技術を実用化レベルに 引き上げる開発の加速が期待できる.

3.3 プラズマの計測・診断技術

前節までに示したレーザー制御およびターゲット技術 を統合したレーザー照射の技術開発を行うには、形成さ れた爆縮プラズマを10Hzの繰り返し率で評価する計 測・診断技術が必要になる. ここでは、単に爆縮プラズ マを計測するだけではなく、データを解析し爆縮の質を 10 Hzの繰り返し速度で評価することが重要となり、統 合システムが構築されることでこの高速診断技術を確立 することができる. 具体的には、X 線 CCD カメラによる 爆縮プラズマの形状や温度,X線ストリークカメラによ り爆縮速度などを10Hzで取得し評価する技術の確立が 期待できる. 統合システムにプラズマ計測技術が備わる ことで、各レーザー特性、ターゲット品質、爆縮プラズ マ状態が紐づけられたデータセットを大量に収集するこ とができる.これが AI を活用したデータ駆動型研究の 基盤となり、レーザー核融合研究の進展を支える重要な 技術となる.

3.4 現在の技術成熟度レベル

これまでに述べてきた統合システムと共通する技術は, 現在文部科学省の先端研究設備プラットフォーム事業に おける「パワーレーザーDX プラットフォーム(2020年~ 2025年)」において,国内の主要なレーザー施設で開発が 進められている¹⁰⁻¹⁴⁾.同事業では,遠隔地からリモート で実験を行うことができるレーザー制御や計測結果の データベース化などのプラットフォームの開発が進めら れており,事業終了時には技術成熟度レベル(Technology Readiness Level: TRL)で"実験室レベルでの実証レベル" となる4以上に到達することが期待される.レーザー板 融合炉の実現に貢献するには、1 kJ×10 Hz レーザーの ターゲット照射およびプラズマ計測・診断をTRLで"実 環境下での技術成立レベル"となる7以上へ高める統合 システムの構築が重要と考えられる.

浜松ホトニクスが開発した 250 J レーザー(Fig. 2)にお いても、レーザーのパラメータとレーザー照射の結果を データベース化できるシステム構成となっている.また、 厚さ 1.2 m のコンクリートを遮蔽壁としたレーザー核融 合研究用の施設内に直径 1.4 m の真空チャンバーを設置 し、そこへレーザー光を対向して照射できる実験系の構 築を行っている(Fig. 4)¹⁸. 同社では、この施設にて 250 J レーザーシステムを軸に本章で示した統合システムに繋 がる個別技術を TRL4 以上で確立する開発を行う計画で ある.

Fig. 4 Experiment area at Hamamatsu Photonics K.K..¹⁸⁾

4. 応用展開への期待

3章では、レーザー核融合発電に向けた国家もしくは 国際プロジェクトの早期の立上げに繋げる方策の一案と して、1 kJ 級 DPSSL 技術を活用したレーザー核融合研究 への貢献について示した.一方で世界では、レーザー核 融合発電に先立つ高エネルギーかつ高繰り返しの DPSSL による応用研究の国家プロジェクトが多く進め られている.そこで本章では、レーザーエネルギーが 10 J 以上で1 kW 以上の平均出力が求められる応用分野につ いて、国内および世界の研究動向を概説する.

Table 1 に示された 250 J レーザーは、NEDO「高輝度・ 高効率次世代レーザー技術開発」プロジェクトを通し て TACMI コンソーシアム^{†7}のレーザー加工プラット フォームの一部として開発された. 金属材料の表面に圧 縮残留応力を付与し疲労寿命を向上することができる レーザーピーニング加工への応用が期待されている. レーザーピーニングは、従来のショットピーニングに比 べ材料の深くまで圧縮残留応力層を形成できる特徴があ り、疲労耐力を大幅に向上することができるため、高い 信頼性が求められる航空機部品などへの適用が進められ ている. HiLASE(チェコ)においても, 低温ヘリウムガス 冷却 Yb: YAG セラミクスによる 100 J×10 Hz 出力が可 能な DPSSL を用いた産業応用の研究が行われている^{†8}. 彼らは, SUS 316Lの3次元金属造形物に対しレーザー ピーニング処理を施し、残留応力層を付与することで疲 労耐性の向上を確認する報告などを行うなど、精力的に 産業開発を進めている¹⁹⁾.米国では,既に LSP technologies 社 や Curtiss-Wright Surface Technologies 社 が レー ザーピーニング事業を展開しており、今後益々高エネル ギーかつ高繰り返し DPSSL の産業展開が進むと考えら れる†9,10

レーザー加工の他には、各国で国家プロジェクトを中 心とした学術・医療などの研究開発に高エネルギーかつ

^{*6} NEDO「高輝度・高効率次世代レーザー技術の開発」プロジェクト: https://www.nedo.go.jp/activities/ZZJP_100124.html

^{†7} TACMI コンソーシアム:http://www.utripl.u-tokyo.ac.jp/tacmi/

^{†8} HiLASE: https://www.hilase.cz/

^{†9} LSP technologies: https://lsptech.tlipng.com/

^{†10} Curtiss-Wright Surface Technologies: https://cwst.com/

高繰り返し動作 DPSSL の適用および検討が進められて いる.日本では JST 未来社会創造事業の中の「レーザー 駆動による量子ビーム加速器の開発と実証」プロジェク トにおいて、レーザー電子加速の研究開発が行われてい る^{†11}.レーザー電子加速を用いた X線自由電子レーザー の実現に向け 1 GeV 以上の電子ビームの安定生成を目 指している²⁰⁾.このレーザー電子加速にはフェムト秒 レーザーが用いられており、フェムト秒レーザーの励起 用光源として繰り返し周波数が 100 Hz 以上でレーザー エネルギーが数 10 J級となる DPSSL の実用化が求めら れている^{21,22)}.また同事業では、レーザーイオン加速に よるがん治療用の量子メスの研究開発も行われており、 フェムト秒レーザーの励起用としてレーザー電子加速よ りも高いエネルギーの DPSSL が必要とされている²³⁾.

英国ラザフォード・アップルトン研究所では, Table 1 に示した 100 J × 10 Hz 出力 DPSSL 技術をベースとした 励起用 DPSSL を新規に開発し, フェムト秒レーザーによ るレーザー電子加速器施設(Extreme photonics applications center: EPAC)が 2024 年から稼働する計画である. 主な応 用先は医療分野における高速イメージングなどの先端研 究である^{†12}.

また,独国ハンブルグにある欧州 X 線自由電子レー ザー施設(European XFEL)でも、英国製 100 J×10 Hz 出 力 DPSSL を設置し、高エネルギーレーザーをターゲット 材料に照射した際に発生する衝撃波を活用した研究が行 われる計画である^{†13}.日本国内においても、理化学研究 所播磨事業所の X 線自由電子レーザー(SACLA)の実験 エリアに波長 532 nm,パルス幅 10 ns, 60 J×0.1 Hz で動 作するフラッシュランプ励起レーザーが設置され、大阪 大学を中心に高エネルギー密度科学の研究が行われてい る²⁴⁾.

その他にもレーザー駆動中性子源やレーザー核融合で 発生する熱を利用した水素製造プラント構想(Hydrogenproduction Plant with Energy Reactor of Inertial fusion: HYPERION)など,産業,医療,学術,材料,宇宙,エ ネルギーなど多岐に渡る分野において社会的なインフラ に繋がる可能性のある重要な応用が期待されている^{25,26)}. このような多岐に渡る高出力レーザーの応用研究を行う 拠点として,大阪大学から多用途施設 J-EPoCH(Japan Establishment for a Power-laser Community Harvest)の建設 が提案されている²⁷⁾.

5. まとめ

本稿では、日米欧で進められている100J超級かつ 10 Hz 動作が可能な DPSSL の開発状況と、ヘリウムガス 冷却マルチディスクレーザーによる1kJ級レーザーの 実現可能性について概説した.また1kJ級 DPSSL によ るレーザー核融合研究への貢献として、1kJ×10 Hz で稼 働するレーザー制御,ターゲット製造・供給,プラズマ 計測・診断を備えた統合システムを構築し,質の良い爆 縮プラズマを安定的に発生する技術開発を行うことで, レーザー核融合のコア技術をTRL7以上に高める構想を 示した.ここで確立された技術は、4章で紹介した様々 な応用においても共通技術となる.

高出力レーザーには国の基幹技術に繋がる様々な応用 展開が期待される.その一方で、レーザー技術は日進月 歩で進歩しており、国際競争力を持った高出力レーザー 技術を維持するためには、継続的な研究開発の支援が求 められる.浜松ホトニクスにおいても、自社設備と施設 を活用して関係機関と連携し大出力レーザーの技術開発 に取り組む計画である.

参考文献

- P. Mason, M. Divoký, K. Ertel, J. Pilař, T. Butcher, M. Hanuš, S. Banerjee, J. Phillips, J. Smith, M. D. Vido, *et al.*: Optica 4 (2017) 438.
- 2) E. Sistrunk, T. Spinka, A. Bayramian, S. Betts, R. Bopp, S. Buck, K. Charron, J. Cupal, R. Deri, M. Drouin, et al.: in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optica Publishing Group, 2017) Sth1L2.
- 3) D. Albach, M. Loeser, M. Siebold, and U. Schramm: High Power Laser Sci. Eng. 7 (2019) e1.
- 4) T. Sekine, T. Kurita, M. Kurata, Y. Hatano, Y. Muramatsu, T. Morita, Y. Kabeya, T. Iguchi, T. Watari, R. Yoshimura, *et al.*: High Energy Density Phys. **36** (2020) 100800.
- 5) M. Divoký, J. Pilař, M. Hanuš, P. Navrătil, O. Denk, P. Severová, P. Mason, T. Butcher, S. Banerjee, M. De Vido, *et al.*: Opt. Lett. 46 (2021) 5771.
- 6) T. Sekine, T. Kurita, Y. Hatano, Y. Muramatsu, M. Kurata, T. Morita, T. Watari, T. Iguchi, R. Yoshimura, Y. Tamaoki, *et al.*: Opt. Express **30** (2022) 44385.
- 7) J. Ogino, S. Tokita, S. Kitajima, H. Yoshida, Z. Li, S. Motokoshi, N. Morio, K. Tsubakimoto, K. Fujioka, R. Kodama, *et al.*: Opt. Cont. 1 (2022) 1270.
- 8) S. Fujioka and Y. Sentoku: Rev. Laser Eng. 49 (2021) 130 (in Japanese).
- 藤岡 慎介, 千徳 靖彦:レーザー研究 49 (2021) 130.
- 9) T. Johzaki: Rev. Laser Eng. **49** (2021) 135 (in Japanese). 城崎 知至:レーザー研究 **49** (2021) 135.
- 10) H. Oku, K. Takahashi, H. Nagatomo, M. Nagata, Y. Kubota, M. Ishida, K. F. Farley LAW, M. Hashimoto, M. Taniguchi, C. Yamaguchi, et al.: Rev. Laser Eng. 50 (2022) 661 (in Japanese). 奥浩行,高橋圭介,長友英夫,永田みず穂,久保田良典, 石田正人, King Fai Farley LAW,橋本賢子,谷口麻梨香, 山口智代,他:レーザー研究 50 (2022) 661.
- 11) K. Miyanishi, K. Sueda, and T. Yabuuchi: Rev. Laser Eng. 50 (2022) 668 (in Japanese). 宮西 宏併,末田 敬一, 籔内 俊毅:レーザー研究 50 (2022) 668
- 12) M. Hashida, S. Inoue, S. Masuno, and S. Tokita: Rev. Laser Eng. 50 (2022) 673 (in Japanese). 橋田 昌樹,井上 崚介, 升野 振一郎, 時田 茂樹: レーザー研 究 50 (2022) 673.
- 13) H. Kiriyama, Y. Mashiba, Y. Miyasaka, N. Nakanii, K. Kondo, A. Kon, Y. Fukuda, and M. Nishiuchi: Rev. Laser Eng. **50** (2022) 678 (in Japanese).
 桐山 博光, 真柴 雄司, 宮坂 泰弘, 中新 信彦, 近藤 康太郎, 今 亮, 福田 祐仁, 西内 満美子: レーザー研究 **50** (2022) 678.
 14) Y. Kobayashi, K. Bamoto, K. Sshimahara, T. Endo, H. Tamaru, K.

^{†11} JST 「レーザー駆動による量子ビーム加速器の開発と実証」プロジェクト:https://lpa.ims.ac.jp/

^{†12} Extreme Photonics Applications Centre (EPAC): https://www.clf.stfc.ac.uk/Pages/EPAC.aspx

^{†13} European XFEL: https://www.xfel.eu/facility/instruments/hed/index_eng.html

Sakaue, H. Sakurai, and S. Tani: Rev. Laser Eng. **50** (2022) 683 (in Japanese).

小林 洋平,場本 圭一,島原 光平,遠藤 翼,田丸 博晴,坂上 和之,櫻井 治之,谷 峻太郎:レーザー研究 50 (2022) 683.

- 15) Y. Mori, A. Iwamoto, K. Ishii, R. Hanayama, S. Okihara, Y. Kitagawa, Y. Nishimura, O. Komeda, T. Hioki, T. Motohiro, *et al.*: Nucl. Fusion **59** (2019) 096022.
- 16) O. Komeda, Y. Nishimura, Y. Mori, R. Hanayama, K. Ishii, S. Nakayama, Y. Kitagawa, T. Sekine, N. Sato, T. Kurita, *et al.*: Sci. Rep. **3** (2013) 2561.
- 17) Y. Mori, Y. Nishimura, O. Kommeda, K. Ishii, R. Hanayama, S. Okihara, Y. Kitagawa, A. Iwamoto, A. Sunahara, Y. Sentoku, *et al.*: Rev. Laser Eng. **49** (2021) 167 (in Japanese). 森芳孝,西村靖彦,米田修,石井勝弘,花山良平,沖原 伸一朗,北川米喜,岩本晃史,砂原淳,千徳靖彦,他: レーザー研究 **49** (2021) 167.
- 18) Y. Tamaoki, T. Sekine, T. Kawashima: J. Inst. Elect. Engnr. Jpn. 141 (2021) 571 (in Japanese).

玉置 善紀, 関根 尊史, 川嶋 利幸: 電気学会誌 **141** (2021) 571. 19) S. Zulić, D. Rostohar, J. Kaufman, S. Pathak, J. Kopeček, M.

- Böhm, J. Brajer, and T Mocek: Surface Engineering **38** (2022) 183.
- 20) T. Hosokai, J. Zhan, N. Pathak, A. G. Zhidkov, D. O. Espinos, Z. Lei, Y. Mizuta, T. Muto, K. Huang, N. Nakanii, *et al.*: Rev. Laser Eng. **50** (2022) 341 (in Japanese).

細貝 知直,金 展, パサック ナビーン, ジドコフ アレクセ イ, ウンバレク エスピノス ドリス, 雷 臻哲, 水田 好雄, 武藤 俊哉, 黄 開, 中新 信彦, 他:レーザー研究 50 (2022) 341.

- 21) J. Ogino, S. Tokita, H. Yoshida, K. Matsumoto, K. Tsubakimoto, K. Fujioka, N. Morio, S. Motokoshi, R. Kodama, and J. Kawanaka: Rev. Laser Eng. 50 (2022) 377 (in Japanese). 荻野 純平,時田 茂樹,吉田 英次,松本 景子,椿本 孝治, 藤岡 加奈,森尾 登,本越 伸二,兒玉 了祐,河仲 準二:レー ザー研究 50 (2022) 377.
- 22) T. Taira: Rev. Laser Eng. **50** (2022) 382 (in Japanese). 平等 拓範:レーザー研究 **50** (2022) 382.
- 23) M. Nishiuchi and K. Kondo: Rev. Laser Eng. **50** (2022) 359 (in Japanese). 西内 満美子,近藤 公伯:レーザー研究 **50** (2022) 359.
- 24) Y. Inubushi, T. Yabuuchi, T. Togashi, K. Sueda, K. Miyanishi, Y. Tange, N. Ozaki, T. Matsuoka, R. Kodama, T. Osaka, *et al.*: Appl. Sci. 10 (2020) 2224.
- 25) A. Yogo: Rev. Laser Eng. **50** (2022) 365 (in Japanese). 余語 覚文:レーザー研究 **50** (2022) 365.
- 26) K. Shigemori and A. Iwamoto: OPTRONICS **481** (2022) 67 (in Japanese).
 - 重森 啓介, 岩本晃史: OPTRONICS 481 (2022) 67.
- 27) R. Kodama: OPTRONICS **481** (2022) 42 (in Japanese). 兒玉 了祐: OPTRONICS **481** (2022) 42.