宇宙太陽光向けた太陽光励起レーザー用単結晶の作製・特性評価 鈴木 優紀子 A , 鳥海 陽平 A , 落合 夏葉 A , 田中 徹 A , 長谷川 和男 B 元廣 友美 B,C ,

Fabrication and Characterization System of Single-Crystal Solar-Pumped Lasers

for Space Solar Power Systems

Y. Suzuki^A, Y. Toriumi^A, N. Ochiai^A, T. Tanaka^A, K. Hasegawa^B and T. Motohiro^{B, C}

 Solar-pumped laser technology has potential applications for the realization of future space solar power systems. We focused on the single-crystal co-doped laser and the compact solar-pumped lasers(μSPLs) and constructed multiple μSPL evaluation systems to elucidate the growth characteristics of the single-crystal laser. First solar oscillation was confirmed in Nd, Cr, Ce: YAG single crystals. However, the measured properties were lower than those of ceramic. We will proceed with the analysis of the permeation characteristics and explore the cause of the characteristics.

Keywords: Solar-pumped lasers, Nd, Cr, Ce co-doped YAG, Single-crystal lasers, Space solar power systems

1 はじめに

NTT 宇宙環境エネルギー研究所では、将来的 な環境負荷ゼロをめざし、核融合発電や宇宙太 陽光発電などの次世代エネルギー創出と、極端 な気候変動や災害などの環境変化に対する耐 性の向上の2つの観点から、地球環境の再生と 持続可能な社会の実現に向けた研究を行って いる.

宇宙太陽光発電技術とは、静止軌道上の衛星

で太陽光エネルギーをレーザー光やマイクロ 波に変換して地上へ長距離伝送し、地上で電力 や光エネルギーとして活用する構想である. NTT では比較的システムの規模を小型化でき ることによる技術実証の可能性の高さ及び光-光エネルギー変換効率の期待値の高さの観点 から、レーザーを使用した方式にフォーカスし ている. また、レーザー方式の宇宙太陽光発電 はレーザーの指向性の高さを利用し、他にも人 工衛星や月面で動作する機械への無線給電な どにも応用が可能と期待できる.

レーザー方式宇宙太陽光発電の主要課題は をレーザー光に変換する技術】の確立をめざし, 宇宙太陽光発電に適したレーザー技術として, Fig.1 Image of Space Solar Power Systems 太陽光励起レーザー技術に着目した. 太陽光励 大きく【Ⅰ宇宙空間で太陽光エネルギーをレー ザー光に変換する技術】【Ⅱレーザー光を地上 へ長距離伝送する技術】【Ⅲ地上でレーザー光 を受光し、エネルギーとして取り出す技術】の 3つであると考えている. 本研究では、【Ⅰ字宙空間で太陽光エネルギー

著者連絡先 ykk.suzuki@ntt.com

A NTT 宇宙環境エネルギー研究所 (〒180-8585 東京都武蔵野市緑町 3-9-11)

 NTT Space Environment and Energy Laboratories (3-9-11 Modori-cho, Musashino-city, Tokyo 180-8585) B 光産業創成大学院大学 (〒431-1202 静岡県浜松市西区呉松町 1955 番 1)

Graduate School for the Creation of New Photonics Industries (1955-1 Kurematsu-cho, Hamamatsu-city, Shizuoka 431-1202)

C 名古屋大学 (〒464-8601 名古屋市千種区不老町)

Nagoya University (Furo-cho, Chigusa-ku, Nagoya, 464-8601)

起レーザーは広帯域な励起光である太陽光を 励起源としてレーザーを直接発振するレーザ 一であり、従来技術の応用として考えられる, 太陽光パネルで発電した電力でレーザーを発 振させる方法と比較してシステムの小型・簡略 化や、電力を介さないことによるエネルギー変 換効率の向上が見込まれ、ロケットによる輸送 コストの観点や放熱が難しい宇宙空間で利用 する観点において、宇宙太陽光発電に適した技 術であると考えている.

太陽光励起レーザー技術については、1960年 代に太陽光による直接発振が報告されてから[1][2], Nd: YAG^[2] \otimes Nd, Cr: YAG^[3], Nd, Ce: YAG^[4] $\ddot{\&}$ $\ddot{\&}$ 様々な固体材料に関して検討がなされてきた. その中でも Nd, Cr: YAG や Nd, Ce: YAG 媒質は, 太陽光への増感剤として作用しレーザー発振 に寄与するエネルギー移動をもたらす Nd3+, Cr³⁺, Ce³⁺元素を共添加した媒質として知られて いる. Cr³⁺元素は 500, 600 nm 帯の波長. Ce³⁺元 素は 400~500 nm 帯の波長を吸収し, Nd³⁺にエ ネルギー遷移し, 1064 nm でのレーザー発振に 寄与する[5].

上記の共添加媒質のほとんどはセラミック 製であり、一方で共添加媒質の単結晶は太陽光 励起レーザー研究の初期には育成·評価が行わ れたものの[6]、現代の高品質な単結晶育成技術 で作製された報告は著者らが調べた限りなさ れていない。単結晶媒質は結晶粒界がないこと から耐熱性が高く、将来的な宇宙空間での応用 可能性を鑑みて、我々は共添加太陽光励起レー ザー媒質としての単結晶の応用可能性につい て検討を行うことにした。まずは単結晶媒質の 特性を明らかにする目的で、太陽光励起レーザ ーの単結晶の育成および、後述するマイクロロ ッド型太陽光励起レーザーの発振評価系の構 築を行った.

2 共添加太陽光励起単結晶レーザー媒質の育 成・加工

2.1 共添加単結晶レーザー媒質の育成

太陽光励起レーザーに用いられる代表的な 材質の一つである Nd, Cr: YAG 単結晶(①)およ び、増感剤としてさらに Ce3+を添加した Nd. Cr. Ce: YAG 単結晶(②)を Czochralski 法 (Cz 法)に て育成した.

また、現有の Nd, Cr: YAG セラミック(3)を 既に実績のある媒質として使用し、比較検討を 行った. いずれの媒質も YAG であり, 1064 nm のレーザー発振が見込まれる. 各媒質の組成を 表1に示す.

Fig.2 Image of Nd, Cr: YAG single-crystal (as-grown)

Table.1 Summary of the composition of the laser

	-4 47 IN	$\sqrt{2}$ $\sqrt{2$	
$\left(\Gamma \right)$	Nd, Cr: YAG 単結晶	Nd:1.1	
		Cr:0.4	
(2)	Nd, Cr, Ce: YAG	Nd: 0.7	
	単結晶	Cr:0.9	
		Ce: 0.2	
3	Nd, Cr: YAG	Nd:1.0	
	セラミック	Cr:0.4	

^{2.2} 超小型太陽光励起レーザー (μSPL)

太陽光励起レーザー媒質は数 cm~10 cm級の ロッドを用いた報告が多いが、マイクロロッド 型太陽光励起レーザー (uSPL)[7]は 1 mm ×1 mm ×10 mm または φ 1 mm × 10 mm と小さく, 集 光パワー密度を高くでき効率よく発振可能な 特徴があり、放熱性能の高さから宇宙太陽光発 雷用涂に適している可能性がある.

図3に単結晶をμSPLに加工したものを示す. ①②それぞれの単結晶を加工し、μSPL の構 造に合わせ、端面励起が可能なレーザー発振評 価系を構築した.

Fig.3Image of Nd, Cr: YAG single-crystal processed into μSPL

3 レーザー発振評価系の構築

図 4 に示す 3 種類の μSPL 用レーザー発振評 価系を作製した.

図 4 (a)は LD による単色光励起を目的として 作製したものであり、レーザーロッドに平行な 励起光①の他、中央のハーフミラーを用いてレ ーザーロッドに垂直な励起光2を 90° 反射さ せ、励起光①を透過させることでレーザー光を 2 光源まで媒質に導入することが可能である. この系は基本的な発振確認のほか、外部ミラー

(a) For monochromatic light incidence

(b) For high brightness white light source incidence

Fig.5 Schematic diagram of solar excited oscillation

の反射率を変化させることで得られる出力を もとに、レーザー媒質の吸収・散乱係数を見積 もることも可能である[8].

図 4 (b)は点光源とみなせるプラズマ高輝度 白色光源を軸外放物面鏡で平行光化すること で太陽光入射を模擬し、再び軸外放物面鏡で集 光·媒質に導入することで、屋内で安定した入 力光強度·スペクトルで太陽光入射を模擬し, 再現性の高い発振を期待できる.

図4(c)は屋外で太陽光を赤道儀で追尾しなが ら入射させ、レーザー発振·出力測定が可能で ある. 集光鏡は直径 76.2 mm の軸外放物面鏡を 採用しており、放物面鏡の入射口にフィルタを 設置することで入射光強度(開口率)を変化させ ることができる. 発振の模式図を図 5 に示す. 軸外放物面鏡でレーザー媒質端面に太陽光を 集光し、レーザー媒質の光入射面に施した端面 反射加工部分と外部ミラー(反射率 95%)間で光 共振し、発振光を取り出す仕組みとなっている. いずれの系も基本的な発振構成は同様である.

4 発振特性測定 · 考察

4.1 単色光励起発振測定

まず図 4 (a)の系を用い、LD を用いて Nd の 吸収波長である 808 nm の単色光を導入し、発 振測定を行った. 得られた出力を図 6 に示す.

図 6 (a)は表 1 ①Nd, Cr: YAG 単結晶と③Nd, Cr: YAG セラミックの測定結果を, (b)は表 1 2 Nd, Cr, Ce: YAG 単結晶の測定結果を示している. 単結晶①②からはそれぞれ5本のレーザーロッ ドを切り出し加工しており、図 6 (a)の1につい てはいずれもほぼ同じ出力に, 図 6 (b)の2)につ いては①と比較すると出力に多少の幅が見ら れるものの, ±5%程度に収まっている.

図 6 (a)(b)の結果より, 波長 808 nm の単色光 励起では発振閾値①55 mW, 271 mW, 349 mW がスロープ効率①39 %, ②30 %, ③51 %, 最大出力①76 mW, ②54 mW, ③102 mW が確 認された. (12の結果は各ロッドの出力の平 均值)

以上の結果より、いずれの単結晶も単色光励 起で発振が確認できたものの, 3Nd. Cr: YAG セ ラミックの発振特性の方が良好な結果が得ら れた.

(a) \mathbb{Q} Nd, Cr: YAG single-crystals and \mathbb{Q} Nd, Cr: YAG ceramic

 (b) Q Nd, Cr, Ce: YAG single-crystals Fig.6 Experimentally obtained laser power characteristics (monochromatic light excited)

4.2 高輝度白色光源(模擬太陽光)励起発振測定

図 4(b)の系では模擬太陽光として高輝度白色 光源である Energetiq Technology 社の LDLS EQ-77-QZ-S を採用している. 本光源の分光放射照 度及び地表面で観測された太陽光スペクトル 分布の比較を図 7 に示す(図 7 (a)は分光放射輝 度, (b)は分光放射照度であることに注意). 図 7 の黒枠で囲まれた部分が特に本研究の媒質で のレーザー発振を評価する際に注目すべき 400 ~ 1000 nm 帯であり、スペクトル形状が概ね一 致していることから、模擬太陽光として妥当な 光源であると考えられる.

集光点での光量は最大 1.9 W と測定され, AM1.5 ·晴天時の太陽光は直径 76.2 mm 軸外放 物面鏡で集光した際に 4.6 W が得られているた め、この系は太陽光のピークの約41%の入力光 量が屋内で安定して得られるものと見なせる. 模擬太陽光発振系の集光部分のプロファイル を測定したところ, 長径 0.4 mm × 短径 0.3 mm

Fig.7 Spectral intensity distribution

の楕円状となり、前述の系での太陽光集光時の 集光直径が約 0.5 mm となることから、太陽光 と同程度のサイズに集光ができていることが わかる.

この系を用いて模擬太陽光励起発振測定を 行い, 表 13 Nd, Cr: YAG セラミックの発振に 成功し, 最大出力 4.5 mW, 発振閾値 1.1 W, ス ロープ効率 0.6%が得られた. 一方, 単結晶は① ②いずれも発振を確認することができなかっ た. 原因として、発振閾値を超えられなかった こと、光軸調整の難しさなどが挙げられる. 改 善案としては白色光源のさらなる高輝度化、多 軸調整機構の導入などが考えられる.

4.3 太陽光励起発振測定

図4(c)の系を用いて太陽光入射測定を行った. 測定結果を表2に示す. 表1①②③すべての 媒質で太陽光集光励起によるレーザー発振に 成功した. 共添加 YAG 単結晶の太陽光励起発 振に関しては著者らが調べた限り、今回が初の 報告となる.

測定結果に関して、発振閾値に関しては12 3でそれほど大きな差は見られなかった. 特に 単結晶媒質である①②に関して比較を行うと, ②の方が①より発振閾値が平均して 10 %程度 低い値となっており, Ce 添加によるレーザー発 振に寄与するスペクトル吸収の増加が起きて いる可能性が示唆される。 しかし発振閾値・ス ロープ効率・出力いずれの指標についても、4.1

試料	測定日	時刻	発振閾値	スロープ効率	最大出力
			(W)	$(\%)$	(mW)
①	2023/1/10	13:15	3.50	0.35	10.0
$^\circledR$	2023/1/11	9:45	3.50	0.66	7.6
$^{\textcircled{\tiny 1}}$	2023/1/11	12:06	3.64	0.87	12.1
②	2023/1/10	14:00	3.40	0.32	3.6
②	2023/1/11	10:00	3.12	0.57	9.2
②	2023/1/11	12:33	3.30	0.35	5.9
③	2022/12/12	9:37	2.75	0.88	12.3
③	2022/12/14	12:21	3.33	1.50	18.5
③	2023/1/10	12:50	3.19	1.30	9.5
③	2023/1/11	9:39	3.30	0.82	10.0
③	2023/1/11	11:57	3.21	1.15	21.0

Table.2 Experimentally obtained laser power characteristics (Solar excited)

① Nd, Cr: YAG単結晶

② Nd, Cr, Ce: YAG単結晶

③ Nd, Cr: YAGセラミック

項の単色光励起の結果と同様、単結晶媒質の1 ②よりセラミック媒質の③の方が良好な特性 が得られる結果となった。単結晶の出力特性が セラミックより低くなっている原因として、単 結晶の組成·屈折率に何らかの問題が生じてい る可能性が考えられる. 現在,分光吸収特性を もとに単結晶及びセラミックの屈折率に関す る分析を進めている. 分析の中で、Cr を添加し た単結晶において, Nd, Cr: YAG セラミックと 吸収ピークが異なり、Cr⁴⁺に近いピークが現れ ている可能性があることから、本来 Cr3+となる べきところが何らかの原因で酸化され、一部 Cr⁴⁺に変化している可能性が示唆されている.

また、同じ媒質でも特性取得毎に発振閾値· スロープ効率が異なっていた。原因としては、 同一の太陽光強度でも直達日射・散乱日射の割 合が異なっていること、気温変化や風などの影 響で共振器の調整状態が変わってしまうこと, 赤道儀の追尾誤差などが可能性として考えら れる.

5 まとめ・今後の方針

字宙太陽光発電への応用可能性を期待し、共 添加単結晶レーザー媒質の育成と, μSPL レー ザー発振評価系として構築した単色光励起・屋 内用模擬太陽光白色励起・太陽光追尾励起系に よる評価実験を行った結果、単色光・太陽光励 起で単結晶媒質の発振に成功した. 一方, いず れの発振評価系でもセラミックの効率を超え ... Nd: 1.1% , Cr: 0.4%

... Nd: 0.7% , Cr: 0.9% , Ce: 0.2%

...Nd: 1.0% , Cr: 0.4%

ることができず、単結晶の特性低下の原因に関 して究明を行っていく必要がある.

今後は共添加単結晶媒質に関する特性劣化 要因の分析のほか、共添加物質による太陽光励 起レーザー内部でのエネルギー移動効率の解 明と組成の最適化を行い、さらに単結晶レーザ 一媒質の熱特性·耐熱性に関する検討を進める. uSPL の形状・構造に関しても改善の余地があ り, 例えば µSPL のロッド長を現在の1 cm→ 2 cm に変更することでエネルギー変換効率向上 が期待できることが数値解析を通じて示唆さ れており[11], 媒質形状の最適化についても合わ せて取り組む. また構築した発振評価系に関し ても白色光源のさらなる高輝度化、調整機構の 自動化などの改良を行う予定である.

参考文献

- [1] Kiss, Z.J., Lewis, H.R., and Duncan, R.C., Appl. Phys. Lett. 2(5), 93-94 (1963).
- [2] Young, C.G., Appl. Opt. 5(6), 993-997 (1966).
- [3] Yabe, T., Ohkubo, T., Uchida, S., Yoshida, K., Nakatsuka, M., Funatsu, T., Mabuti, A., Oyama, A., Nakagawa, K., Oishi, T., Daito, K., Behgol, B., Nakayama, Y., Yoshida, M., Motokoshi, S., Sato, Y. and Baasandash, C., Appl. Phys. Lett. 90(26), 261120 (2007).
- [4] Vistas, C., Liang, D., Almeida, J., Tibúrcio, B., Garcia, D., Catela, M., Costa, H. and Guillot, E. J., Photonics. Energy 11, 018001 (2021).
- [5] Fujioka, K., Nakatsuka, M., Saiki, T., Motokoshi, S., Imasaki, K., Fujimoto, Y., and Fujita, H., The Review of Laser Engineering 38(3), 207-212 (2010).
- [6] Kiss, Z. J., and Duncan. R. C., Applied Physics Lett 5(10), 200-202 (1964).
- [7] Ito, H., Hasegawa, K., Mizuno, S., Takeda, Y. and Motohiro, T., "Advances in Optics: Reviews" Vol.5, 417-471(2021).
- [8] Findlay, D., and R. A. Clay., Physics Letters 20(3), 277-278(1966).
- [9] HAMAMATSU PHOTONICS LDLS EQ-77- QZ-S https://www.hamamatsu.com/jp/ja/product/ligh t-and-radiation-sources/Laser-Driven-Light-Source-LDLS/EQ-77-QZ-S.html
- [10] National Renewable Energy Laboratory "Reference Air Mass 1.5 Spectra" https://www.nrel.gov/grid/solarresource/spectra-am1.5.html
- [11] Motohiro, T., and Hasegawa, K., Optik 284, 170942(2023).